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Preface

About R

R is a statistical analysis and graphics environment and also a programming language. It is com-
mand driven and very similar to the commercially-produced S-Plus® software. R is known for its
professional looking graphics, which allow complete customisation.

R is open source software and free to install under the GNU general public license. It is written and
maintained by a group of volunteers known as the R core team.

The base software is supplemented by over three thousand add-on packages developed by R users all
over the world, many of whom belong to the academic community. These packages cover a broad
range of statistical techniques including some of the most recently developed and niche purpose.
Anyone can contribute add-on packages, which are checked for quality before they are added to the
collection.

At the time of writing, the current version of R is 2.15.

The purpose of this book

This book is designed to give straight forward, practical guidance for performing popular statistical
methods in R. The programming aspect of R is explored only briefly.

After reading this book you will be able to:

• navigate the R system

• enter and import data

• manipulate datasets

• calculate summary statistics

• create statistical plots and customise their appearance

• perform hypothesis tests such as the t-test and analysis of variance

• build regression models



viii Preface

• create your own functions

• access additional functionality with the use of add-on packages.

Knowledge assumed

Whilst the book does include some reminders about statistics methods and examples demonstrating
their use, it is not intended to teach statistics. Therefore you will require some previous knowledge
such that you are able to select the most appropriate statistical method for your purpose and
interpret the results. You should also be familiar with common statistical terms and concepts. If
you are unsure about any of the methods that you are using, I recommend that you use this book
in conjunction with a more detailed book on statistics.

No prior knowledge of R or of programming is assumed, making this book ideal if you are more
accustomed to working with point-and-click style packages. Only general computer skills and a
familiarity with your operating system are required.

Conventions used in this book

This book uses the following typographical conventions:

Fixed width font is used to distinguish all R commands and output from the main text.

Normal fixed width font is used for built-in R function names, argument names, syntax,
specific dataset and variable names and any other parts of the commands that can be copied
verbatim.

Slanted fixed width font is used for generic dataset and variable names and any other
parts of the commands that should be replaced with the user’s own values.

Often it has not been possible to fit a whole command into the width of the page. In these cases,
the command is continued on the following line and indented. Where you see this, the command
should still be entered into the console on a single line.

Grey text boxes contain reminders of statistical theory or methods which are separate from the main
text.
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Datasets used in this book

A large number of example datasets are included with R, and these are available to use as soon
as you open the software. This book makes use of several of these datasets for demonstration
purposes.

There are also a number of additional datasets used throughout the book, details of which are given
in the Appendix B. They are available from the website:

www.InstantR.com

Contact the author

Supplementary materials, updates and datasets are available from the website:

www.InstantR.com

To give feedback you can email me at:

S.Stowell@InstantR.com.
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Chapter 1

R fundamentals

This chapter introduces the R system, beginning with how to download and install R, familiarise
yourself with the interface and start giving commands. You will learn about the different types of R
files. It also explains all of the important technical terms that will be used throughout the book. If
you are new to R I recommend that you read the entire chapter, as it will give you a solid foundation
on which to build.

1.1 Downloading and installing R

The R software is freely available from the R website. Windows® and Mac® users should follow
the instructions below to download the installation file:

1. Go to the R project website at www.r-project.org.

2. Follow the link to ‘CRAN’ (on the left-hand side).

3. You will be taken to a list of sites that host the R installation files (mirror sites). Select a site
close to your location.

4. Select your operating system. There are installation files available for the Windows, Mac and
Linux® operating systems.

5. If downloading R for Windows, you will be asked to select from the ‘base’ or ‘contrib’ distri-
butions. Select the ‘base’ distribution.

6. Follow the link to download the R installation file and save the file to a suitable location on
your machine.

To install R for the Windows and Mac OS environments, open the installation file and follow the
instructions given by the set-up wizard as you would for any other piece of Windows-based software.
You will be given the option of customising the installation, but if you are new to R I recommend
that you use the standard installation settings. If you are installing R on a networked computer,
you may need to contact your system administrator to obtain permission before performing the
installation.
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For Linux users, the simplest way to install R is via the package manager. You can find R by
searching for r-base-core. Detailed installation instructions are available in the same location as the
installation files.

If you have the required technical knowledge then you can also compile the software from the source
code. An in-depth guide can be found at:

www.stats.bris.ac.uk/R/doc/manuals/R-admin.pdf

1.2 Getting orientated

Once you have installed the software and opened it for the first time, you will see the R interface
as shown in Figure 1.1.

Figure 1.1: The R interface

There are several drop down menus and buttons, but unlike in point-and-click style statistical
packages, you will only use these for supporting activities such as opening and saving R files, setting
preferences and loading add-on packages. You will perform all of the main tasks (such as importing
data, performing statistical analysis and creating graphs) by giving R typed commands.
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The window named ‘R Console’ is where you will type your commands. It is also where the output
and any error messages are displayed. Later you will use other windows such as the data editor,
script editor and graphics device.

1.3 The R console and command prompt

Now turn your attention to the R console window. Every time you start R, some blue text relating
to copyright and other issues appears in the console window, as shown in Figure 1.1. If you find the
text in the console difficult to read, you can adjust it by selecting ‘GUI preferences’ from the ‘Edit’
menu. This opens a dialogue window which allows you to change the size and font of the console
text, as well as other options.

Below all of the text that appears in the console at startup you will see the command prompt, which
is coloured red and looks like this:

>

The command prompt tells you that R is ready to receive your command.

Try typing the following command at the prompt and pressing enter:

> 8-2

R responds by giving the following output in the next line of the console:

[1] 6
>

The [1] tells you which component of the output you are looking at, which is not of much interest
at this stage as the output has only one component. This is followed by the result of the calculation,
which is 6. Notice that all output is shown in blue, to distinguish it from your commands.

The output is followed by another prompt (>) to tell you that it has finished processing your
command and is ready for the next one. If you don’t see a command prompt after entering a
command, it may be because the command you have given is not complete. Try entering the
following incomplete command at the command prompt:

> 8-

R responds with a plus sign:

+

If you see the plus sign it means you need to type the remainder of the command and press enter.
Alternatively you can press the ‘Esc’ key to cancel the command and return to the command prompt.

omah
Highlight
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Another time that you would not see the command prompt is when R is still working on the task.
Usually this time is negligible, but there may be some waiting time for more complex tasks or those
involving large datasets. If a command takes much longer than expected to complete, you can
cancel it with the ‘Esc’ key.

From here onwards the command prompt will be omitted when showing output.

Table 1.1 shows the symbols used to represent the basic arithmetic operations.

Operation Symbol

Addition +
Subtraction -
Multiplication *
Division /
Exponentiation ^

Table 1.1: Arithmetic Operators

If a command is composed of several arithmetic operators, they are evaluated in the usual order of
precedence i.e. first the exponentiation (power) symbol, followed by division, then multiplication,
and finally addition and subtraction. You can also add parenthesis to control precedence if required.
For example the command:

> 3^2+6/3+2

gives the result:

[1] 13

while the command:

> (3^2+6)/(3+2)

gives the result:

[1] 3

If you want to repeat a command, you can use the up and down arrow keys on your keyboard to
scroll through previously entered commands. You will be able to edit the command before pressing
enter. This means that you don’t have to retype a whole command just to correct a minor mistake,
which you will find useful as you begin to use longer and more complex commands.
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1.4 Functions

In order to do anything more than basic arithmetic calculations, you will need to use functions. A
function is a set of commands which have been given a name and together perform a specific task
producing some kind of output. Usually a function also requires some kind of data as input.

R has many built-in functions for performing a variety of tasks from simple things like rounding
numbers, to importing files and performing complex statistical analysis. You will make use of these
throughout this book. You can also create your own functions, which is covered briefly in Chapter
12.

Whenever you use a function, you will type the function name followed by round brackets. Any
input required by the function is placed between the brackets.

An example of a function that does not require any input is the date function, which gives the
current date and time from your computer’s clock.

> date()
[1] "Sun Jun 10 15:19:27 2012"

An example of a simple function that requires input is the round function, which rounds numbers.
The input required is the number you want to round. A single piece of input is known as an
argument.

> round(3.141593)
[1] 3

As you can see, the round function rounds a given number to the nearest whole number, but you
can also use it to round a number to a different level of accuracy. The command below rounds the
same number to two decimal places.

> round(3.141593, digits=2)
[1] 3.14

We were able to change the behaviour of the round function by adding an additional argument
giving the number of decimal places required. When you provide more than one argument to a
function, they must be separated with commas. Each argument has a name. In this case, the
argument giving the number of decimal places is called digits. Often you don’t need to give the
names of the arguments, because R is able to identify them by their values and the order in which
they are arranged. So for the round function, the following command is also acceptable.

> round(3.141593, 2)

Some arguments are optional and some must be provided for the function to work. For the round
function, the number to be rounded (in this example 3.141593) is a required argument and the
function won’t work without it. The digits argument is optional. If you don’t supply it, R
assumes a default value of zero.
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For every function included with R, there is a help file which you can view by entering the command:

> help(functionname)

The help file gives details of all of the arguments for the function, whether they are required or
optional and what their default values are.

Table 1.2 shows some useful mathematical functions.

Purpose Function

Exponential exp
Natural logarithm log
Log base 10 log10
Square root sqrt
Cosine cos
Sine sin
Tangent tan
Arc cosine acos
Arc sine asin
Arc tangent atan
Round round
Absolute value abs
Factorial factorial

Table 1.2: Useful mathematical functions

1.5 Objects

In R, an object is some data which has been given a name and stored in the memory. The data
could be anything from a single number to a whole table of data of mixed types.

You can create objects with the assignment operator , which looks like this:

<-

For example, to create an object named object1 that holds the value 5.234, use the command;

> object1<-5.234

When creating new objects, you must choose an object name that:

1. consists only of upper and lower case letters, numbers, underscores (_) and dots (.)
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2. begins with an upper or lower case letter or a dot (.)

3. is not one of R’s reserved words. Enter help(reserved) to see a list of these.

R is case sensitive, so object1, OBJECT1 and Object1 are all distinct object names.

If you choose an object name which is already in use, you will overwrite the old object with the new
one. R does not give any warning if you do this.

To view the contents of an object you have already created, enter the object name.

> object1
[1] 5.234

Once you have created an object, you can use it in place of the information it contains. For example
as input to a function:

> log(object1)
[1] 1.655176

As well as creating objects with specific values, you can save the output of a function or calculation
directly to a new object:

> object2<-log(object1)+0.6

Notice that when you assign the output from a function or calculation to an object, R does not
display the output. To see it, you must view the contents of the object by entering the object name.

To change the contents of an object, simply overwrite it with a new value.

> object1<-6.214

Objects like those created above are called numeric objects because they contains numbers. You
can also create other types of objects such as character objects, which contain a combination of
any keyboard characters known as a character string. When creating a character object, enclose
the character string in quotation marks as shown below.

> object3<-"Hello!"

You can use either double or single quotation marks to enclose a character string, as long they are
both of the same type. To include quotation marks within a character string, place a backslash
before the quotes (known as an escape sequence), as shown.

> object4<-"I said \"Hello!\""

So far we have only discussed simple objects which contain a single data value, but you can also
create more complex types of objects. Two important types are vectors and data frames. A vector
is an object that contains several data values of the same type. A data frame is an object that holds
an entire dataset. Vectors and data frames are discussed in more detail in the following sections.
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1.6 Vectors

A vector is an object that holds several data values of the same type arranged in a particular order.
You can create vectors with a special function which is named c, as shown below.

> vector1<-c(3, 3.76, -0.35, 1.2, -5)

You can view the contents of a vector by entering its name, as you would for any other object.

> vector1
[1] 3.00 3.76 -0.35 1.20 -5.00

The number of values a vector holds is called its length. You can check the length of a vector with
the length function.

> length(vector1)
[1] 5

Each data value in the vector has a position within the vector, which you can refer to using square
brackets. This is known as bracket notation. For example, you can view the third member of
vector1 with the command:

> vector1[3]
[1] -0.35

If you have a large vector (such that when displayed, the values of the vector fill several lines of
the console window), the indices at the side tell you which member of the vector each line begins
with. For example, the vector below contains twenty-seven values. The indices at the side show
that the second line begins with the eleventh member and the third line begins with the twenty-first
member. This helps you to determine the position of each value within the vector.

[1] 0.077 0.489 1.603 2.110 2.625 1.019 1.100 1.729 2.469 -0.125
[11] 1.931 0.155 0.572 1.160 -1.405 2.868 0.632 -1.714 2.615 0.714
[21] 0.979 1.768 1.429 -0.119 0.459 1.083 -0.270

If you give a vector as input to a function intended for use with a single number (such as the exp
function), R applies the function to each member of the vector individually and gives another vector
as output.

> exp(vector1)
[1] 20.085536923 42.948425979 0.704688090 3.320116923 0.006737947

Some functions are designed specifically for use with vectors and use all members of the vector
together to create a single value as output. An example is the mean function, which calculates the
mean of all the values in the vector.
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> mean(vector1)
[1] 0.522

The mean function and other statistical summary functions are discussed in more detail in Section
5.1.

Like basic objects, vectors can hold different types of data values such as numbers or character
strings. However all members of the vector must be of the same type. If you attempt to create a
vector containing both numbers and characters, R will convert any numeric values into numerals.
Numerals are character representation of numbers which look like numbers but are treated as text
and cannot be used in calculations.

1.7 Data frames

A data frame is a type of object which is suitable for holding a dataset. A data frame is composed
of several vectors of the same length, displayed vertically and arranged side by side. This forms a
rectangular grid in which each column has a name and contains one vector. Whilst all the values in
one column of a data frame must be of the same type, different columns can hold different types of
data (such as numbers or character strings). This makes them ideal for storing datasets, with each
column holding a variable and each row an observation.

In Chapter 2 you will learn how to create new data frames to hold your own datasets. For now,
there are some datasets included with R that you can experiment with. One of these is called
Puromycin, which we will use here to demonstrate the idea of a data frame. You can view the
contents of the Puromycin dataset in the same way as for any other object, by entering its name
at the command prompt.

> Puromycin

R outputs the contents of the data frame:

conc rate state
1 0.02 76 treated
2 0.02 47 treated
3 0.06 97 treated
4 0.06 107 treated
5 0.11 123 treated
6 0.11 139 treated
7 0.22 159 treated
8 0.22 152 treated
9 0.56 191 treated
10 0.56 201 treated
11 1.10 207 treated
12 1.10 200 treated
13 0.02 67 untreated
14 0.02 51 untreated
15 0.06 84 untreated
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16 0.06 86 untreated
17 0.11 98 untreated
18 0.11 115 untreated
19 0.22 131 untreated
20 0.22 124 untreated
21 0.56 144 untreated
22 0.56 158 untreated
23 1.10 160 untreated

The dataset has three variables named conc, rate and state, and it has 23 observations.

It is important to know how to refer to the different components of a data frame. To refer to a
particular variable within a dataset by name, use the dollar symbol ($) as shown below.

> Puromycin$rate

[1] 76 47 97 107 123 139 159 152 191 201 207 200 67 51 84 86 98 115 131
[20] 124 144 158 160

This is useful because it allows you to apply functions to the variable, e.g. to calculate the mean
value of the rate variable.

> mean(Puromycin$rate)
[1] 126.8261

As well as selecting variables by name with the dollar symbol, you can refer to sections of the data
frame using bracket notation. Bracket notation can be thought of as a coordinate system for the
data frame. You provide the row number and column number between square brackets.

> dataset[r,c]

For example, to select the value in the sixth row of the second column of the Puromycin dataset
using bracket notation, use the command:

> Puromycin[6,2]
[1] 139

You can select a whole row by leaving the column number blank. For example to select the sixth
row of the Puromycin dataset:

> Puromycin[6,]

conc rate state
6 0.11 139 treated

Similarly to select a whole column, leave the row number blank. For example to select the second
column of the Puromycin dataset:
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> Puromycin[,2]

[1] 76 47 97 107 123 139 159 152 191 201 207 200 67 51 84 86 98 115 131
[20] 124 144 158 160

When selecting whole columns, you can also leave out the comma entirely and just give the column
number.

> Puromycin[2]

You can use the minus sign to exclude a part of the data frame instead of selecting it. For example
to exclude the first column:

> Puromycin[-1]

rate state
1 76 treated
2 47 treated
3 97 treated
4 107 treated
5 123 treated
6 139 treated
7 159 treated
8 152 treated
9 191 treated
10 201 treated
11 207 treated
12 200 treated
13 67 untreated
14 51 untreated
15 84 untreated
16 86 untreated
17 98 untreated
18 115 untreated
19 131 untreated
20 124 untreated
21 144 untreated
22 158 untreated
23 160 untreated

You can use the colon (:) to select a range of rows or columns. For example to select row numbers
six to ten:

> Puromycin[6:10,]

conc rate state
6 0.11 139 treated
7 0.22 159 treated
8 0.22 152 treated
9 0.56 191 treated
10 0.56 201 treated
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To select non-consecutive rows or columns, use the c function inside the brackets. For example to
select columns one and three:

> Puromycin[,c(1,3)]

conc state
1 0.02 treated
2 0.02 treated
3 0.06 treated
4 0.06 treated
5 0.11 treated
6 0.11 treated
7 0.22 treated
8 0.22 treated
9 0.56 treated
10 0.56 treated
11 1.10 treated
12 1.10 treated
13 0.02 untreated
14 0.02 untreated
15 0.06 untreated
16 0.06 untreated
17 0.11 untreated
18 0.11 untreated
19 0.22 untreated
20 0.22 untreated
21 0.56 untreated
22 0.56 untreated
23 1.10 untreated

You can also use object names in place of numbers:

> rownum<-c(6,8,14)
> colnum<-2
> Puromycin[rownum,colnum]
[1] 139 152 51

Or even functions:

> Puromycin[sqrt(25),]

conc rate state
5 0.11 123 treated

Finally, you can refer to specific entries using a combination of the variable name and bracket
notation. For example to select the tenth observation for the rate variable:

> Puromycin$rate[10]

[1] 201
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You can view more information about the Puromycin dataset (or any of the other dataset included
with R) with the help function.

> help(Puromycin)

1.8 The data editor

As an alternative to viewing datasets in the command window, R has a spreadsheet style viewer
called the data editor which allows you to view and edit data frames. To open the Puromycin
dataset in the data editor window, use the command:

> fix(Puromycin)

Figure 1.2: The data editor window
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Alternatively you can select ‘Data editor’ from the ‘Edit’ menu and enter the name of the dataset
that you want to view when prompted. The dataset opens in the data editor window, as shown
in Figure 1.2. Here you can make changes to the data. When you have finished, close the editor
window to apply them.

Whilst the data editor can be useful for making minor changes, there are usually more efficient ways
of manipulating a dataset. These are covered in Chapter 3.

1.9 Workspaces

The workspace is the virtual area containing all of the objects you have created in the session. To
see a list of all the objects in the workspace, use the objects function:

> objects()

You can delete objects from the workspace with the rm function.

> rm(object1, object2, object3)

To delete all of the objects in the workspace, use the command:36

> rm(list=objects())

You can save the contents of the workspace to a file, which allows you to resume working with them
at another time. To save the workspace, select ‘File’ then ‘Save Workspace’ from the drop-down
menus, then name and save the file in the usual way. Ensure that the file name has the .RData file
name extension, as it will not be added automatically.

R automatically loads the most recently-saved workspace at the beginning of each new session.
You can also open a previously saved workspace by selecting ‘File’ then ‘Open Workspace’ from the
drop-down menus and selecting the file in the usual way. Once you have opened a workspace, all
of the objects within it are available for you to use.

Mac users can find options for saving and loading the workspace from the ‘Workspace’ menu.

Linux users can save the workspace by entering the command:

> save.image("/home/Username/folder/filename.RData")

The file path can be either absolute or relative to the home directory.

To load a workspace, use the command:

> load("/home/Username/folder/filename.RData")
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1.10 Error messages

Sometimes R will encounter a problem while trying to complete one of your commands. When
this happens, a message is displayed in the console window to inform you of the problem. These
messages come in two varieties known as error messages and warning messages.

Error messages begin with the text ‘Error:’ and are displayed when R is not able to perform the
command at all. One of most common causes of error messages is giving a command that is not a
valid R command because it contains a symbol that R does not understand, or because a symbol is
missing or in the wrong place. This is known as a syntax error. In the following example, the error
is caused by an extra closing bracket at the end of the command.

> round(3.141592))
Error: unexpected ’)’ in "round(3.141592))"

Another common cause of errors is mistyping an object name so that you are referring to an object
that does not exist. Remember that object names are case sensitive.

> log(object5)
Error: object ’object5’ not found

The same applies to function names, which are also case sensitive.

> Log(3.141592)
Error: could not find function "Log"

A third common cause of errors is giving the wrong type of input to a function, such as a data
frame where a vector is expected, or a character string where a number is expected.

> log("Hello!")
Error in log("Hello!") : Non-numeric argument to mathematical

function

Warning messages begin with the text ‘Warning:’ and tell you about issues that have not prevented
the command from being completed, but that you should be aware of.

> log(-2)
[1] NaN
Warning message:
In log(-2) : NaNs produced

1.11 Script files

A script file is a type of text file that allows you to save your commands so that they can be easily
reviewed, edited and repeated.
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To create a new script file, select ‘New script’ from the ‘File’ menu. Mac users should select
‘New Document’ from the ‘File’ menu. This opens a new ‘R Editor’ window where you can type
commands.

To run a command from the script editor, place the cursor on the line that you want to run, then
right-click and select ‘Run line or selection’. You can also use the shortcut Ctrl+R. Alternatively
you can click the run button, which looks like this:

To run several commands, highlight a selection of commands then right-click and select ’Run line
or selection’, as shown in Figure 1.3.

Figure 1.3: Running commands from a script file

Mac users can run the current line or a selection of commands by pressing Cmd+Return.

The selected commands are submitted to the command window and executed one after the other.

If your script file is going to be used by someone else or if you are likely to return to it after a long
time, it is helpful to add some comments. Comments are additional text which are not part of the
commands themselves but are used to make notes and explain the commands.
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Add comments to your script file by typing the hash sign (#) before the comment. R ignores any
text following a hash sign, for the remainder of the line. This means that if you run a section of
commands that has comments in, the comments will not cause errors. Figure 1.4 shows a script file
with comments.

Figure 1.4: Script file with comments

You can save a script file using by selecting ‘File’ then ‘Save’. If the ‘Save’ option is not shown in
the File menu, it is because you don’t have focus on the script editor window and need to select it.
The file is given the .R file name extension. Similarly, you can open a previously saved script file by
selecting ‘File’ then ‘Open script’ and selecting the file in the usual manner.

Mac users can save a script file by selecting the icon in the top left-hand corner of the script editor
window. They can open a previously saved script file by selecting ‘Open Document’ from the ‘File’
menu.

The Linux version of R does not include a script editor, however a number of external editors are
available. To see a list of these, go to:

www.sciviews.org/_rgui/projects/Editors.html
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The purpose of this chapter is to familiarise you with the R interface and the programming
terms which will be used throughout the book. Make sure you understand the following
terms before proceeding:

R Console The window into which you type your commands and in which output and any
error or warning messages are displayed.

Command A typed instruction to R.

Command prompt The symbol used by R to indicate that it is ready to receive your com-
mand, which looks like this: >

Function A set of commands which have been given a name and together perform a specific
task.

Argument A value or piece of data supplied to a function as input.

Object A piece of data or information which has been stored and given a name.

Vector An object that contains several data values of the same type arranged in a particular
order.

Data frame A type of object which is suitable for holding a dataset.

Workspace The virtual area containing all of the objects created in the session, which can
be saved to a file with the .RData file name extension.

Script file A file with the .R extension, which is used to save commands.

Chapter summary: R fundamentals
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Chapter 2

Working with data files

This chapter covers the first step in performing any statistical analysis, which is to get your data in
to R.

For very small datasets, it may be easiest to enter your data by typing the values in directly. This
is explained in Section 2.1.

Section 2.2 explains how you can import plain text files, including the comma-separated value (CSV),
tab-delimited and data interchange format (DIF) file formats.

Section 2.3 explains how you can import Excel® files by first converting them to the CSV format.

If you have a dataset stored in a file type specific to another software package such as an SPSS®

or Stata® data file, Section 2.4 discusses how you can deal with it.

In addition to explaining data entry and import, the chapter covers other topics relevant to working
with data files. Section 2.5 explains how to work with relative file paths. Section 2.6 explains how
you can export a dataset to a CSV or tab-delimited file.

2.1 Entering data directly

If you have a small dataset which is not already recorded in electronic form, you may want to input
your data into R directly.

Consider the dataset shown in Table 2.1, which gives some data for four UK supermarkets chains.
It is representative of a typical dataset where the columns represent variables and each row holds
one observation.

To enter a dataset in to R, the first step is to create a vector of data values for each variable using
the c function, as explained in Section 1.6. So for the supermarkets data, input the four variables
as shown.

> Chain<-c("Morrisons", "Asda", "Tesco", "Sainsburys")
> Stores<-c(439, NA, 2715, 934)
> Sales.Area<-c(12261, NA, 36722, 19108)
> Market.Share<-c(12.3, 16.9, 30.3, 16.5)
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Chain Stores Sales Area Market Share
(1,000 sq ft) (%)

Morrisons 439 12261 12.3
Asda 16.9
Tesco 2715 36722 30.3
Sainsburys 934 19108 16.5

Table 2.1: Data for the UK’s four largest supermarket chains (2011). See Appendix B
for more details.

The vectors should all have the same length, meaning that they should contain the same number
of values. Where a data value is missing, enter the characters NA in its place. Remember to put
quotation marks around non-numeric values, as shown for the Chain variable.

Once you have created vectors for each of the variables, use the data.frame function to combine
them to form a data frame.

> supermarkets<-data.frame(Chain, Stores, Sales.Area, Market.Share)

You can check the dataset has been entered correctly by entering its name.

> supermarkets

Chain Stores Sales.Area Market.Share
1 Morrisons 439 12261 12.3
2 Asda NA NA 16.9
3 Tesco 2715 36722 30.3
4 Sainsburys 934 19108 16.5

After you have created the data frame, the individual vectors still exist in the workspace as separate
objects from the data frame. To avoid any confusion, you can delete them with the rm function.

> rm(Chain, Stores, Sales.Area, Market.Share)

2.2 Importing plain text files

The simplest way to transfer data to R is in a plain text file (sometimes called a flat text file).
These are files that consist of plain text with no additional formatting and can be read by plain text
editors such as Microsoft Notepad, TextEdit (for Mac users) or gedit (for Linux users). There are
several standard formats for storing spreadsheet data in text files, which use symbols to indicate the
layout of the data. These include:
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• Comma-separated values or comma-delimited (.csv) files

• Tab-delimited (.txt) files

• Data interchange format (.dif) files.

These file formats are useful because they can be read by all of the popular statistical and database
software packages, allowing easy transfer of datasets between them.

The following subsections explains how you can import datasets from these standard file formats in
to R.

2.2.1 CSV and tab-delimited files

Comma-separated values (CSV) files are the most popular way of storing spreadsheet data in a plain
text file. In a CSV file, the data values are arranged with one observation per line and commas are
used to separate data value within each line (hence the name). The tab-delimited file format is very
similar to the CSV format except that the data values are separated with horizontal tabs instead of
commas. Figure 2.1 shows how the supermarkets data looks in the CSV and tab-delimited formats.

You can import a CSV file with the read.csv function, as shown below:

> dataset1<-read.csv("C:/folder/filename.csv")

This command imports data from the file location C:/folder/filename.csv and saves it to
a data frame called dataset1.

Remember that when choosing a dataset name, the usual object naming rules apply (see Section
1.5). It is a good idea to choose a short but meaningful name that describes the data in the file.

The file path C:/folder/filename.csv is the location of the CSV file on your hard drive,
network drive or storage device. Notice that you must use forward slashes to indicate directories
instead of the back slashes used by Windows, and that you must enclose the file path between
quotation marks. For Mac and Linux users, the file path will begin with a forward slash e.g.
/Users/username/folder/filename.csv.

If the dataset has been successfully imported, there is no output and R displays the command
prompt once it has finished importing the file. Otherwise you will see an error message explaining
why the import failed. Assuming there are no issues, your data will be stored in the data frame
named dataset1. You can view and check the data by typing the dataset name at the command
prompt, or by opening it with the data editor.

For importing tab-delimited files, there is a similar function called read.delim.

> dataset1<-read.delim("C:/folder/filename.txt")
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(a) CSV

(b) Tab-delimited

Figure 2.1: The supermarkets dataset saved in the CSV and tab-delimited file formats

When you use the read.csv or read.delim functions to import a file, R assumes that the
entries in the first line of the file are the variable names for the dataset. Sometimes R will adjust
the variable names so that they follow the naming rules (see Section 1.5) and are unique within the
dataset.

If your file does not contain any variable names, set the header argument to F (for false) as shown
below. This prevents R from using the first line of your data as the variable names.

> dataset1<-read.csv("C:/folder/filename.csv", header=F)

When you set the header argument to F, R assigns generic variable names of V1, V2, etc.
Alternatively you can supply your own names with the col.names argument.

> dataset1<-read.csv("C:/folder/filename.csv", header=F,
col.names=c("Name1", "Name2", "Name3"))

When using the col.names argument, make sure you give the same number of names as there
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are variables in the file. Otherwise you will either see an error message or get an undesirable results
as R attempts to match the variable names with the variables.

In a CSV and tab-delimited file, missing data is usually represented by an empty field. However some
files may use a symbol or character such as a decimal point, the number 9999 or the word NULL
as a place holder. If so, use the na.strings argument to tell R which characters to interpret as
missing data.

> dataset1<-read.csv("C:/folder/filename.csv", na.strings=".")

Note that R automatically interprets the letters NA as indicating missing data. Blank spaces found
in numeric variables (but not character variables) are also recognised as missing data.

In some parts of the world, a comma is used instead of a dot to denote the decimal point in
numbers. R has two special functions for dealing with data in this form called read.csv2 and
read.delim2, which you can use in place of the read.csv and read.delim functions.

2.2.2 DIF files

To import a data interchange format (DIF) file with the .dif file name extension, use the read.DIF
function as shown.

> dataset1<-read.DIF("C:/folder/filename.dif")

By default, the read.DIF function assumes that there are no variable names in the file (unlike the
read.csv and read.delim functions). If the file does contain variable names, set the header
argument to T (for true) as shown below. Otherwise R will treat the variable names as part of the
data values.

> dataset1<-read.DIF("C:/folder/filename.dif", header=T)

As when importing CSV and tab-delimited files, you can use the na.strings argument to tell R
about any values that it should interpret as missing data.

> dataset1<-read.DIF("C:/folder/filename.dif", na.string="NULL")

Note that if you are importing a DIF file that was created by Microsoft Excel, you may see the error
message More rows than specified in header; maybe use ’transpose=TRUE’
when you try to import the file. This error message appears because there are some differences in
the file format used by Microsoft Excel. You can resolve the problem by setting the transpose
argument to T as shown below.

> dataset1<-read.DIF("C:/folder/filename.dif", transpose=T)
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2.2.3 Other plain text files

As well as all of the functions available for importing specific file formats, R also has a generic
function for importing data from plain text files called read.table. It allows you to import any
plain text file in which the data is arranged with one observation per line.

Consider the file shown in Figure 2.2, which has data arranged with one observation per line and
data values separated by the forward slash symbol (/).

Figure 2.2: Supermarkets data in a non-standard file type

You could import the file with the command below.

> dataset1<-read.table("C:/folder/supermarkets.txt", sep="/",
header=T)

By default, the read.table function assumes that there are no variable names in the first row of
the file (unlike the read.csv and read.delim functions). If the file has variable names in the
first row (as in this example), set the header argument to T.

As with the other import functions, you can use the na.strings argument to tell R of any values
to interpret as missing data.

> dataset1<-read.table("C:/folder/filename.txt", sep="/", header=T,
na.strings="NULL")

2.3 Importing Excel files

The simplest way to import a Microsoft Excel file is to save your Excel file as a CSV file which you
can then import as explained in Section 2.2.1.
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First open your file in Excel and ensure that the data is arranged correctly within the spreadsheet,
with one variable per column and one observation per row. If the dataset includes variable names
then these should be placed in the first row of the spreadsheet. Otherwise, the data values should
begin on the first row. Figure 2.3 shows how the supermarkets data looks when correctly arranged
in an Excel file.

Figure 2.3: The correct way to arrange a dataset in an Excel spreadsheet, to facilitate
easy conversion to the CSV file format

To ensure a smooth file conversion, check the following:

• There are no empty cells above or to the left of the data grid.

• There are no merged cells.

• There is no more than one row of column headers.

• Where data values are missing, the cell is left empty.

• There are no commas in large numbers (e.g. 1324157 is acceptable but 1,324,157 is not).

• If exponential (scientific) notation is used, the format is correct (e.g. 0.00312 can be expressed
as 3.12e-3 or 3.12E-3).

• There are no currency, unit or percent symbols in numeric variables (symbols in categorical
variables or in the variable names are fine).



26 Chapter 2. Working with data files

• The minus sign is used to indicate negative numbers (e.g. -5) and not brackets (parenthesis)
or red text.

• The workbook has only one worksheet.

Once the data is prepared, save the spreadsheet as a CSV file by selecting ‘Save as’ from the ‘File’
menu. When the save dialogue box appears, select the .csv file type from the ‘Save as type’ field,
as shown in Figure 2.4. Then save the file as usual. Excel will give you a warning that all formatting
will be lost, which you can accept.

Figure 2.4: Saving an Excel file as a CSV file

The CSV file is now ready for you to import with the read.csv function, as explained in Section
2.2.1.

If you do not have access to Excel, you can use an add-on package such as xlsx or xlsReadWrite
to import Excel files directly. See Appendix A for more details on using add-on packages.

2.4 Importing files from other software

Sometimes you may need to import a dataset that is saved in a file format specific to another
statistical package, such as an SPSS or Stata data file.
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If you have access to the software, the simplest solution is to open the file using the software and
convert the file to the CSV file format using the ‘Save as’ or ‘Export’ option, which is usually found
in the ‘File’ menu. Once the file is in CSV format you can import it with the read.csv function,
as explained in Section 2.2.1.

If you are not able to convert the file then you can use an add-on package called foreign, which
allows you to directly import data from files types produced by some of the popular statistical
software packages.

Add-on packages are covered in greater detail in Appendix A. For now, you just need to know that
an add-on package contains additional functions which are not part of the standard R installation.
To use the functions within the foreign package, you must first load the package.

To load the foreign package, select ‘Load Package’ from the ‘Packages’ menu. When the list of
packages appears, select ‘foreign’ and press OK. Once the package has loaded, all of the functions
within it will be available for you to use for the duration of the session.

Table 2.2 lists some of the functions available for importing foreign file types.

File type Extension Function

Database format file .dbf read.dbf

Stata v5.11 data file .dta read.dta

Minitab portable worksheet file .mtp read.mtp

SPSS data file .sav read.spss

SAS transfer format .xport read.xport

Epi Info data file .rec read.epiinfo

Octave text data file read.octave

Attribute-relation file .arff read.arff

Systat file .sys, .syd read.systat

Table 2.2: Some of the functions available in the foreign add-on package28

For example to import a Stata data file, use the command:

> dataset1<-read.dta("C:/folder/filename.dta")

You may need to use additional arguments to ensure the file is imported correctly. For further
information on using the functions in the foreign package, use the help function or refer to the
package documentation available from the R project website at:

cran.r-project.org/web/packages/foreign/foreign.pdf
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2.5 Using relative file paths

So far we have only used absolute file paths to describe the location of a data file. An absolute file
path gives the full address of the file, which in the Windows environment begins with a drive name
such as C:/.

You can also use relative file paths, which describe the location of the file in relation to the working
directory. The working directory is the directory which R is set to look in when given relative file
paths. This is useful if you need to import or export a large number of files and don’t want to type
the full file path each time. To see which is the current working directory, use the command:

> getwd()

If you are using a fresh installation of R for Windows, the working directory will be your ‘My
Documents’ folder, and R will output something like this:

[1] "C:/Users/Username/Documents"

For Mac and Linux users, the default working directory will be your home directory and will look
something like this:

[1] "/Users/Username"

So to import a CSV file which has the absolute file path:

C:/Users/Username/Documents/Data/filename.csv

you could use the command:

> read.csv("Data/filename.csv")

You can change the working directory to wherever you prefer to store your data files, use the setwd
function as shown below. The change is applied for the remainder of the session.

> setwd("C:/folder/subfolder")

2.6 Exporting datasets

R allows you to export datasets from the R workspace to the CSV and tab-delimited files formats.

To export a data frame named dataset to a CSV file, use the write.csv function.

> write.csv(dataset, "filename.csv")
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For example, to export the Puromycin dataset to a file named puromycin_data.csv, use the
command:

> write.csv(Puromycin, "puromycin_data.csv")

This command creates the file and saves it to your working directory (see Section 2.5 for how to
find and set the working directory). To save the file somewhere other than in the working directory,
enter the full path for the file as shown.

> write.csv(dataset, "C:/folder/filename.csv")

If a file with your chosen name already exists in the specified location, R overwrites the original file
without giving a warning. You should check the files in the destination folder beforehand to make
sure you are not overwriting anything important.

The write.table function allows you to export data to a wider range of file formats, including
tab-delimited files. Use the sep argument to specify which character should be used to separate the
values. To export a dataset to a tab-delimited file, set the sep argument to "\t" (which denotes
the tab symbol), as shown below.

> write.table(dataset, "filename.txt", sep="\t")

By default, the write.csv and write.table functions create an extra column in the file
containing the observation numbers. To prevent this, set the row.names argument to F.

> write.csv(dataset, "filename.csv", row.names=F)

With the read.table function, you can also prevent variable names being placed in the first line
of the file with the col.names argument.

> write.table(dataset, "filename.txt", col.names=F)
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Task Command

Create data frame dataset<-data.frame(vector1, vector2,
vector3)

Import CSV file dataset<-read.csv("filepath")

Import tab-delimited file dataset<-read.delim("filepath")

Import DIF file dataset<-read.DIF("filepath")

Import other text file dataset<-read.table("filepath", sep="?")

Display working directory getwd()

Change working directory setwd("C:/folder/subfolder")

Export dataset to CSV file write.csv(dataset, "filename.csv")

Export dataset to tab-delimited
file

write.table(dataset, "filename.txt",
sep="\t")

Chapter summary: Working with data files
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Chapter 3

Preparing and manipulating your
data

Once you have imported your dataset, it is likely that you will need to make some changes before
beginning any statistical analysis. This could be tidying the dataset by renaming variables, removing
irrelevant data and sorting the observations. Alternatively you may need to adjust the data type
for some of the variables, or create new variables from the existing ones. This chapter explains how
you can make these types of changes to a dataset. More complex changes, such as combining two
datasets or changing the structure of the data, are covered in Chapter 4.

This chapter uses the people dataset shown in Figure 3.1 for demonstration purposes. This dataset
gives the eye colour (brown, blue or green), height in centimetres, hand span in millimetres, sex (1
for male, 2 for female) and handedness (L for left-handed, R for right-handed) of 16 people.

Figure 3.1: The people dataset. See Appendix B for more details.

This chapter also uses the pulserates, fruit, flights, customers and coffeeshop
datasets, which are all available from the website in CSV format or in an R workspace file. For more
information about these datasets, see Appendix B.
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3.1 Rearranging and removing variables

You can rearrange or remove the variables in a dataset with the subset function. Use the select
argument to choose which variables to keep and in which order. Remove unwanted variables by
excluding them from the list.

For example, the command below removes the Subject and Height variables from the people
dataset, and rearranges the remaining variables so that Hand.Span is first, followed by Sex then
Eye.Colour.

> people1<-subset(people, select=c(Hand.Span, Sex, Eye.Colour))

Figure 3.2 shows how the new dataset looks after the changes have been applied.

Figure 3.2: The people1 dataset, created by removing variables from the people
dataset with the subset function.

Notice that the command creates a new dataset called people1 which is a modified version of
the original, and leaves the original dataset unchanged. Alternatively you can overwrite the original
dataset with the modified version as shown below.

> people<-subset(people, select=c(Hand.Span, Sex, Eye.Colour))

The subset function does more than remove and rearrange variables. You can also use it to select
a subset of observations from a dataset, which is explained in Section 3.11.

Another way of removing variables from a dataset is with bracket notation. This is particularly useful
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if you have a dataset with a large number of variables and you only want to remove a few. For
example, to remove the first, third and sixth variables from the people dataset, use the command:

> people1<-people[-c(1,3,6)]

Similarly to retain the second, fourth and first variables and reorder them, use the command:

> people1<-people[c(2,4,1)]

See Section 1.7 for more details on using bracket notation.

3.2 Renaming variables

The names function displays a list of the variable names for a dataset.

> names(people)

[1] "Subject" "Eye.Colour" "Height" "Hand.Span" "Sex" "Handedness"

You can also use the names function to rename variables. The command below renames the fifth
variable in the people dataset.

> names(people)[5]<-"Gender"

Similarly to rename the second, fourth and fifth variables:

> names(people)[c(2,4,5)]<-c("Eyes", "Span.mm", "Gender")

Alternatively you can rename all of the variables in the dataset simultaneously as shown.

> names(people)<-c("Subject", "Eyes", "Height.cm", "Span.mm",
"Gender", "Hand")

Make sure that you provide the same number of variable names as there are variables in the dataset.

3.3 Variable classes

Each of the variables in a dataset has a class, which describes the type of data the variable contains.
You can view the class of a variable with the class function.

> class(dataset$variable)
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To check the class of all the variables simultaneously, use the command:

> sapply(dataset, class)

A variable’s class determines how R will treat the variable when you use it in statistical analysis and
plots. There are many possible variable classes in R, but only a few that you are likely to use:

numeric variables contain real numbers, meaning positive or negative numbers with or without a
decimal point. They can also contain the missing data symbol (NA).

integer variables contain positive or negative numbers without a decimal point. This class behaves
in much the same way as the numeric class. An integer variable is automatically converted
to a numeric variable if a value with a fractional part is included.

factor variables are suitable for categorical data. Factor variables generally have a small number of
unique values, known as levels. The actual values can be either numbers or character strings.

date & POSIXlt variables contain dates or date-times in a special format which is convenient to
work with.

character variables contain character strings. A character string is any combination of unicode
characters including letters, numbers and symbols. This class is suitable for any data which
does not belong to one of the other classes, such as reference numbers, labels and text giving
additional comments or information.

When you import a data file using a function such as read.csv, R automatically assigns each
variable a class based on its contents. If a variable contains only numbers, R assigns the numeric
or integer class. If a variable contains any non-numeric values, it assigns the factor class.

Since R does not know how you intend to use the data contained in each variable, the classes that
it assigns to them may not always be appropriate. To illustrate, consider the Sex variable in the
people dataset. Since the variable contains whole numbers, R automatically assigns the integer
class when the data is imported. But the factor class would be more appropriate, as the values
represent categories rather than counts or measurements.

You can change the class of a variable to factor with the as.factor function.

> dataset$variable<-as.factor(dataset$variable)

If you have a variable containing numeric values which for some reason has been assigned another
class, you can change it using the as.numeric function. Any non-numeric values are treated as
missing data and replaced with the missing data code (NA).

> dataset$variable<-as.numeric(dataset$variable)

If R has not automatically recognised a variable as numeric when importing a dataset, then it is
because the variable contains at least one non-numeric value. It is wise to determine the cause, as
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it may be that a value has been entered incorrectly or that a symbol used to represent missing data
has not been recognised.

You can change the class of a variable to character using the as.character function.

> dataset$variable<-as.character(dataset$variable)

There is also an as.Date function for creating date variables, which you will learn more about in
Section 3.8.

3.4 Calculating new numeric variables

You can create a new variable within a dataset in the same way you would create any other new
object, using the assignment operator. So to create a new variable named var2 that is a copy of
an existing variable named var1, use the command:

> dataset$var2<-dataset$var1

You can create new numeric variables from combinations of existing numeric variables and arith-
metic operators and functions. For example, the command below adds a new variable called
Height.Inches to the people dataset, which gives the subject’s heights in inches rounded
to the nearest inch.

> people$Height.Inches<-round(people$Height/2.54)

You can use bracket notation to make conditional changes to a variable. For example, to set all
values of Height less than 150 cm to missing, use the command:

> people$Height[people$Height<150]<-NA

You will learn more about using conditions in Sections 3.11 and 12.2.1.

You may want to create a new variable which is a statistical summary of several of the existing
variables. The apply function allows you to do this.

Consider the pulserates dataset shown in Figure 3.3 which gives pulse rate data for four patients.
The patients’ pulse rates are measured in triplicate and stored in variables Pulse1, Pulse2 and
Pulse3.

Suppose that you want to calculate a new variable giving the mean pulse for each patient. You can
create the new variable with the command:

> pulserates$Mean.Pulse<-apply(pulserates[2:4], 1, mean)
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(a) Original dataset
(b) New variable

Figure 3.3: pulserates dataset giving the pulse rates of four patients, measured in
triplicate. See Appendix B for more details.

Notice that bracket notation is used to select column numbers 2 to 4. See Section 1.7 for more
details on using bracket notation.

The second argument allows you to specify whether the summary should be calculated for each row
(by setting it to 1) or each column (by setting it to 2). To create a new variable, set it to 1.

You can substitute the mean function with any univariate statistical summary function that gives
a single value as output, such as sd or max. Table 5.1 on page 60 gives a list of these (use only
those marked with an asterisk).

3.5 Dividing a continuous variable into categories

Sometimes you may want to create a new categorical variable by classifying the observations ac-
cording to the value of a continuous variable.

For example, consider the people dataset shown on page 31. Suppose that you want to create
a new variable called Height.Cat which classifies the people as ‘Short’, ‘Medium’ and ‘Tall’
according to their height. People less that 160 cm tall are classified as ‘Short’, people between 160
cm and 180 cm tall are classified as ‘Medium’ and people greater than 180 cm tall are classified as
‘Tall’.

You can create the new variable with the cut function, as shown.

> people$Height.Cat<-cut(people$Height, c(150, 160, 180, 200),
c("Short", "Medium", "Tall"))

Figure 3.4 shows the people dataset with the new Height.Cat variable.

When using the cut function, the numbers of group boundaries (in this example four) must be one
more than the number of group names (in this example three). If a data value is equal to one of
the boundaries, it is placed in the category below. Make sure your categories cover the whole range
of the data values, otherwise the new variable will have missing values. In this example, there is
one observation (subject 3) that does not fall in to any of the categories that have been defined, so
has a missing value for the Height.Cat variable.
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Figure 3.4: The people dataset with the new Height.cat variable.

If you prefer, you can specify the number of categories and let R determine where the boundaries
should be. R divides the range of the variable to create evenly sized categories. For example, the
command below shows how you would split the Height variable into three evenly sized categories.

> people$Height.Cat<-cut(people$Height, 3, c("Short", "Medium",
"Tall"))

Any variables you create with the cut function are automatically assigned the factor class.

3.6 Working with factor variables

As explained in Section 3.3, factor variables are suitable for holding categorical data. To change
the class of a variable to factor, use the as.factor function.

> people$Sex<-as.factor(people$Sex)

A factor variable has a number of levels, which are all of the unique values that the variable takes
(i.e. all of the possible categories). To view the levels of a factor variable, use the levels function:

> levels(people$Sex)
[1] "1" "2"
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Since the level names will appear on any plots and statistical output that you create based on the
variable, it is helpful if they are meaningful and attractive. You can change the names of the levels
as shown.

> levels(people$Sex)<-c("Male", "Female")

You must give the same number of names as there are levels of the factor, and enter the new names
in corresponding order.

You can also combine factor levels by renaming them. Consider the Eye.Colour variable in the
people dataset. Using the levels function, you can see that there is an extra level resulting
from a spelling variation.

> levels(people$Eye.Colour)
[1] "Blue" "brown" "Brown" "Green"

To rename the second factor level so that it has the correct spelling, use the command:

> levels(people$Eye.Colour)[2]<-"Brown"

When the factor levels are viewed again, you can see that the two levels have been combined.

> levels(people$Eye.Colour)
[1] "Blue" "Brown" "Green"

You can change the order of the levels with the relevel function. For example, to make Brown
the first level of the Eye.Colour variable, use the command:

> people$Eye.colour<-relevel(people$Eye.Colour, "Brown")

The order of the factor levels is important because if you include the factor in a statistical model,
R uses the first level of the factor as the reference level. You will learn more about this in Chapter
11.

3.7 Manipulating character variables

R has a number of functions for manipulating character strings. Three of the most useful are paste
(for concatenating strings), substring (for extracting a substring) and grep (for searching a
string). These are demonstrated in the following subsections.

3.7.1 Concatenating character strings

The paste function allows you to create new character variables by pasting together existing
variables (of any class) and other characters.
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(a) Original dataset (b) New variable

Figure 3.5: fruit dataset giving UK fruit prices for August 2012. See Appendix B for
more details.

Consider the fruit dataset shown in Figure 3.5a, which gives prices for a selection of fruit. Suppose
you want to create a new variable giving a price label for each of the fruit. The label should have
the product description, price with pound sign and sale unit.

You can create the new variable (shown in Figure 3.5b) with the command:

> fruit$Label<-paste(fruit$Product, ": £", format(fruit$Price,
trim=T, digits=2), " ", fruit$Unit, sep="")

By default, the paste function inserts a space between each of the components being pasted
together. In this example, sep="" has been added to prevent this, so that spaces are not inserted
in unwanted places such as between the pound sign and the price. Instead spaces have been inserted
manually where required, placed between quotation marks. You can also use the sep argument to
specify another keyboard symbol to use as a separator.

Notice that the format function has been used to ensure that the fruit prices are always displayed
to two decimal places.

3.7.2 Extracting a substring

The substring function allow you to create a new variable by extracting a section of characters
from an existing variable.

Consider the flights dataset shown in Figure 3.6a. The Flight.Number variable gives flight
numbers that begin with a two-letter prefix indicating which airline the flight is operated by. Suppose
that you wish to create two new variables, one named Airline giving the two-letter airline prefix
and another named Ref giving the number component, as shown in Figure 3.6b.

When using the substring function, give the positions within the character string of the first and
last characters you want to extract. So to extract the first two characters from the Flight.Number
variable to create the Airline variable, use the command:

> flights$Airline<-substring(flights$Flight.Number, 1, 2)
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(a) Original dataset
(b) New variables

Figure 3.6: flights dataset giving details of flights from Southampton Airport. See
Appendix B for more details.

You can also give a starting position only, and the remainder of the string is extracted. So to create
the Ref variable, use the command:

> flights$Ref<-substring(flights$Flight.Number, 3)

Note that although the new Ref variable contains numbers, it still has the character class
because it was created with the substring function. If you wanted to use it as a numeric
variable, you can convert it with the as.numeric function as described in Section 3.3.

3.7.3 Searching a character variable

The grep function allows you to search a character string for a search term.

Consider the customers dataset shown in Figure 3.7. Suppose that you want to identify all of
the customer that live in the city of Reading.

Figure 3.7: The customers dataset. See Appendix B for more details.

The command below searches the Address variable for the term ‘reading’.

> grep("reading", customers$Address)
[1] 2

R outputs the number 2 to indicate that observation number 2 contains the term ‘reading’.
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Notice that R has only returned one result because the search in case sensitive, so that ‘Reading’
and ‘READING’ are not considered matches to the search term ‘reading’. To change this, set the
ignore.case argument to T.

> grep("reading", customers$Address, ignore.case=T)
[1] 1 2 4

Instead of displaying the observation numbers, you can save them to an object. This allows you to
create a new dataset containing only the observations that matched the search term, as shown.

> matches<-grep("reading", customers$Address, ignore.case=T)
> reading.customers<-customers[matches,]

3.8 Working with dates and times

R has special date and date-time variable classes that make this type of data easier to work with.
When you import a dataset, R does not automatically recognise date variables. Instead they are
assigned one of the other classes according to their contents. You can convert these variables with
the as.Date and strptime functions.

For variables containing just dates (without times), use the as.Date function to convert the
variable to the date class. The command takes the form:

> dataset$variable<-as.Date(dataset$variable, "format")

where "format" tells R how to read the dates. R uses a special notation for specifying the format
of a date, shown in Table 3.1.

Consider the Date variable in the coffeeshop dataset, shown in Figure 3.8. The variable has
dates in the format dd/mmm/yyyy.

Figure 3.8: coffeeshop dataset. See Appendix B for more details.

To convert the variable to the date class, use the command:

> coffeeshop$Date<-as.Date(coffeeshop$Date, "%d/%b/%Y")
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Symbol Meaning Possible values

%d Day of the month 01 to 31, or 1 to 31
%m Month number 01 to 12
%b Three letter abbreviated month name Jan, Feb, Mar, Apr, etc
%B Full month name January, Febuary, March, April, etc
%y Two digit year 00 to 99, e.g. 10 for 2010
%Y Four digit year e.g. 2004

%H Hour in 24-hour format 00 to 23, e.g. 19 for 7pm
%M Minute past the hour 00 to 59
%S Seconds past the hour 00 to 59
%I Hour in 12-hour format 01 to 12
%p AM or PM AM or PM

Table 3.1: The most commonly used symbols for date-time formats.32 Enter
help(strptime) to view a complete list.

The format %d/%b/%Y tells R to expect a day (%d), three letter month name (%b), and four digit
year (%Y), seperated by forward slashes. The format must be enclosed in quotation marks.

The are two date formats which R recognises without you needing to specify them, which are yyyy-
mm-dd and yyyy/mm/dd. If your dates are in either of these formats, then you don’t need to give
a format when using the as.Date function.

For variables containing dates with time information, use the strptime function to convert the
variable to the POSIXlt class.

For example, suppose you want to create a new date-time variable from the Date and Time
variables in the flights dataset (see Figure 3.6 on page 40). Before you can create a date-time
variable, you will need to combine the two variables to create a single character variable using the
paste function (see Section 3.7.1).

> flights$DateTime<-paste(flights$Date, flights$Time)

Once the date and time are together in the same character string, you can use the strptime
function to convert the variable class. The strptime function is used in the same way as the
as.Date function.

> flights$DateTime<-strptime(flights$DateTime, "%d/%m/%Y %H:%M")

Once your variable has the date or POSIXlt class, you can perform a number of date related
operations using functions designed for these variable classes.

For example, to find the length of the time interval between two dates or date-times, use the
difftime function as shown below.
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> dataset$duration<-difftime(dataset$enddate, dataset$startdate,
units="hours")

Options for the units argument are secs, mins, hours, days (the default) and weeks.

To compare a date variable with the current date (e.g. to calculate an age), use the Sys.Date
function.

> dataset$age<-difftime(Sys.Date(), dataset$dob)

You can use arithmetic operators to add or subtract days (for date variables) or seconds (for POSIXlt
variables). For example, to find the date one week before a given date.

> dataset$newdatevar<-dataset$datevar-7

To find which day of the week a date falls on, use the weekdays function. There are also similar
functions called months and quarters.

> coffeeshop$Day<-weekdays(coffeeshop$Date)

The round function can also be used with date-time variables. Specify one of the time units secs,
mins, hours or days as shown.

> round(flights$DateTime, units="hours")

You can create a character variable from a date variable with the format function. Specify how
you want R to display the date using the format symbols given in Table 3.1.

> dataset$charvar<-format(dataset$datevar, format="%d.%m.%Y")

3.9 Adding and removing observations

The simplest way to add additional observations to a dataset is with the data editor, which you can
open with the command:

> fix(dataset)

When the editor window opens, type the values for the new observation into the first empty row
beneath the existing data. If any of the values are missing, leave the relevant cell empty. When you
have finished adding new values, close the data editor to apply the changes.

The simplest way to remove individual observations from a dataset is using bracket notation (see
Section 1.7). For example, to remove observation numbers 2, 4 and 7 use the command:

> dataset<-dataset[-c(2,4,7),]
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Be careful to include the comma before the closing bracket, otherwise you will remove columns
rather than rows.

Remember that you can also use the colon symbol (:) to select a range of consecutive observations.
For example, to remove observation numbers 2 to 10 use the command:

> dataset<-dataset[-c(2:10),]

To remove all of the observations which match a specified criteria or belong to a particular group,
use the subset function as explained in Section 3.11.

3.10 Removing duplicate observations

To remove duplicates observations from a dataset, use the unique function.

> dataset<-unique(dataset)

To save the duplicates to a separate dataset before removing them, use the duplicated function
as shown below.

> dups<-dataset[duplicated(dataset),]

3.11 Selecting a subset of the data

Sometimes you may need to select a subset of a dataset containing only those observations that
match certain criteria, such as belonging to a particular category or where the value of one of the
numeric variables falls within a given range. You can do this with the subset function. The
command takes the general form:

> subset(dataset, condition)

For example, to select all of the observations from the people dataset where the value of the
Eye.Colour variable is Brown, use the command:

> subset(people, Eye.Colour=="Brown")

Subject Eye.Colour Height Hand.Span Sex Handedness
1 1 Brown 186 210 1 R
3 3 Brown 147 167 2
5 5 Brown 170 193 1 R
11 11 Brown 163 223 1 R
16 16 Brown 173 196 1 R
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Notice that you must use two equals signs rather than one.

To save the selected observations to a new dataset, assign the output to a new dataset name as
shown.

> browneyes<-subset(people, Eye.Colour=="Brown")

To select all the observations for which a variable takes any one of a list of values, use the %in%
operator. For example, to select all observations where Eye.Colour is either Brown or Green,
use the command:

> subset(people, Eye.Colour %in% c("Brown", "Green"))

Subject Eye.Colour Height Hand.Span Sex Handedness
1 1 Brown 186 210 1 R
2 2 Green 182 220 1 R
3 3 Brown 147 167 2
4 4 Green 157 180 2 L
5 5 Brown 170 193 1 R
11 11 Brown 163 223 1 R
15 15 Green 160 190 2
16 16 Brown 173 196 1 R

To select observations to exclude instead of to include, replace == with != (which mean ‘not equal
to’). For example, to exclude all observations where the value of Eye.Colour is equal to "Blue",
use the command:

> subset(people, Eye.Colour!="Blue")

You can also select observations according to the value of a numeric variable. For example to select
all observations from the people dataset where the Height variable is equal to 169, use the
command:

> subset(people, Height==169)

Subject Eye.Colour Height Hand.Span Sex Handedness
6 6 Blue 169 190 2 L

Notice that quotation marks are not required for numeric values.

With numeric variables you can also use relational operators to select observations. For example,
to select all observations for which the value of the Height variable is less than 165, use the
command:

> subset(people, Height<165)
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Subject Eye.Colour Height Hand.Span Sex Handedness
3 3 Brown 147 167 2
4 4 Green 157 180 2 L
11 11 Brown 163 223 1 R
15 15 Green 160 190 2

Other relational operators you could use are > (greater than), >= (greater than or equal to) and
<= (less than or equal to).

You can also combine two or more conditions using the AND operator (denoted &) and the OR
operator (denoted |). When two criteria are joined with the AND operator, R selects only those
observations which meet both conditions. When they are joined with the OR operator, R selects
the observations which meet either one of the conditions, or both.

For example, to select observations where Eye.Colour is Brown and Height is less than 165,
use the command:

> subset(people, Eye.Colour=="Brown" & Height<165)

Subject Eye.Colour Height Hand.Span Sex Handedness
3 3 Brown 147 167 2
11 11 Brown 163 223 1 R

As well as selecting a subset of observations from the dataset, you can also use the select
argument to select which variables to keep.

> subset(people, Height<165, select=c(Hand.Span, Height))

Hand.Span Height
3 167 147
4 180 157
11 223 163
15 190 160

You can also subset a dataset using bracket notation. For example, the command below selects
only those people with brown eyes.

> people[people$Eye.Colour=="Brown",]

Note that it is not always necessary to subset a dataset before performing analysis. Many analysis
functions have a subset argument within the function. This allows you to perform the analysis
for a subset of the data. For example, the command below creates a scatter plot of height against
hand span, showing only males (i.e. where Sex is equal to 2).

> plot(Height~Hand.Span, people, subset=Sex==2)

You will learn more about scatter plots in Section 8.7.
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3.12 Selecting a random sample from a dataset

To select a random sample of observations from a dataset, use the sample function. For example,
the following command selects a random sample of 50 observations from a dataset named dataset
and saves them to new dataset named sampledata.

> sampledata<-dataset[sample(1:nrow(dataset), 50),]

By default, the sample function samples without replacement, so that no observation can be se-
lected more than once. For this reason, the sample size must be less than the number of observations
in the dataset. To sample with replacement, set the replace argument to T as shown.

> sampledata<-dataset[sample(1:nrow(dataset), 50, replace=T),]

3.13 Sorting a dataset

You can use the order function to sort a dataset. For example, to sort the people dataset by
the Hand.Span variable, use the command:

> people<-people[order(people$Hand.Span),]

Subject Eye.Colour Height Hand.Span Sex Handedness
3 3 Brown 147 167 2
10 10 Blue 166 178 2 R
4 4 Green 157 180 2 L
6 6 Blue 169 190 2 L
15 15 Green 160 190 2
5 5 Brown 170 193 1 R
9 9 Blue 166 193 2 R
16 16 Brown 173 196 1 R
1 1 Brown 186 210 1 R
8 8 Blue 173 211 1 R
13 13 Blue 176 214 1
7 7 brown 174 217 1 R
14 14 Blue 183 218 1 R
2 2 Green 182 220 1 R
11 11 Brown 163 223 1 R
12 12 Blue 184 225 1 R

To sort in decreasing instead of ascending order, set the decreasing argument to T as shown.

> people<-people[order(people$Hand.Span, decreasing=T),]

You can also sort by more than one variable. To sort the dataset first by Sex and then by Height,
use the command:

> people<-people[order(people$Sex, people$Height),]
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Task Command

Rename variable names(dataset)[n]<-"Newname"

View variable class class(dataset$variable)

Change variable class to
numeric

dataset$var1<-as.numeric(dataset$var1)

Change variable class to
factor

dataset$var1<-as.factor(dataset$var1)

Change variable class to
character

dataset$var1<-as.character(dataset$var1)

Change variable class to date dataset$var1<-as.Date(dataset$var1,
"format")

Copy variable dataset$var2<-dataset$var1

Divide variable into
categories

dataset$factor1<-cut(dataset$var1,
c(1,2,3,4), c("Name1", "Name2",
"Name3"))

Rename factor level levels(dataset$variable)[n]<-"Newname"

Reorder factor levels relevel(dataset$variable, "Level1")

Join two character strings dataset$var3<-paste(dataset$var1,
dataset$var2)

Extract a substring dataset$var2<-substring(dataset$var1,
first, last)

Search character variable grep("search term", dataset$variable)

Remove cases dataset<-dataset[-c(2,4,7),]

Remove duplicates dataset<-unique(dataset)

Select subset subset(dataset, variable=="value")

Select random sample newdataset<-dataset[sample(1:nrow(dataset),
samplesize),]

Sort dataset dataset<-dataset[order(dataset$variable),]

Chapter summary: Preparing and manipulating your data
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Chapter 4

Combining and restructuring data-
sets

This chapter explains how to combine two or more datasets to create one large dataset, and how
to change the structure of a dataset.

There are several ways of combining datasets in R. Section 4.1 explains how to attach one dataset
to the bottom of another, which is known as appending or concatenating. Section 4.2 explains how
to attach one dataset to the side of another. Section 4.3 explains how you can merge two datasets
by using a common variable to match the observations.

Restructuring a dataset means to change its shape by combining several variables into one long
variable, or creating several shorter variables from one long one. Stacking and unstacking datasets
is covered in Sections 4.4 and 4.5. Reshaping (also known as rotating or transposing) is covered in
Section 4.6.

This chapter uses the CIAdata1, CIAdata2, WHOdata, CPIdata, bigcats, endangered,
grades1, resistance and vitalsigns datasets, which are available from the website. For
more details about these datasets, see Appendix B. It also uses the iris dataset, which is included
with R. To view more information about this dataset, enter help(iris).

4.1 Appending rows

This rbind function allows you to attach one dataset on to the bottom of the other, which is
known as appending or concatenating the datasets. This is useful when you want to combine two
datasets that contain different observations for the same variables, such as the CIAdata1 and
CIAdata2 datasets shown in Figure 4.1a and 4.1b.

Before using the rbind function, make sure that each dataset contains the same number of variables
and that all of the variable names match. You may need to remove or rename some variables first,
as explained in Sections 3.1 and 3.2. The variables do not need to be arranged in the same order
within the datasets, as the rbind function automatically matches them by name.

Once the datasets are prepared, append them with the rbind function as shown below for the
CIAdata1 and CIAdata2 datasets.
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(a) CIAdata1

(b) CIAdata2

(c) CIAdata

Figure 4.1: Data from the CIA World Factbook. See Appendix B for more details.

> CIAdata<-rbind(CIAdata1, CIAdata2)

The new CIAdata dataset is shown in Figure 4.1c. Notice that the new dataset contains all of
the original data in the original order, including two copies of the data for Slovakia. The rbind
function does not identify duplicates or sort the data. You can do this with the unique and order
functions as explained in Sections 3.10 and 3.13.

You can append three or more datasets in a similar manner.

> newdataset<-rbind(dataset1, dataset2, dataset3)

4.2 Appending columns

The cbind function pastes one dataset on to the side of another. This is useful if the data from
corresponding rows of each dataset belong to the same observation, as is the case for the CIAdata1
and WHOdata datasets shown in Figure 4.2a and 4.2b.
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(a) CIAdata1
(b) WHOdata

(c) CIAWHOdata

Figure 4.2: Data from the CIA World Factbook and from the World Health Organisation.
See Appendix B for more details.

You can only use the cbind function to combine datasets which have the same number of rows.
If your datasets have a common variable or variables that can be used to match the observations,
use the merge function to combine the datasets as explained in Section 4.3.

The command below combines the CIAdata1 and WHOdata datasets to create a new dataset
called CIAWHOdata. The result is shown in Figure 4.2c.

> CIAWHOdata<-cbind(CIAdata1, WHOdata)

You can combine three or more datasets in a similar way.

> newdataset<-cbind(dataset1, dataset2, dataset3)

4.3 Merging datasets by common variables

The merge function allows you to combine two datasets by matching the observations according
to the values of common variables.

Consider the CIAdata1 and CPIdata datasets shown in Figure 4.3a and 4.3b. The datasets have
a common variable called country, which can be used to match corresponding observations.

To following command shows how you would combine the CIAdata1 and CPIdata datasets. The
result is shown in Figure 4.3c.
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(a) CIAdata1
(b) CPIdata

(c) CIACPIdata

(d) allCIACPIdata

Figure 4.3: Data from the CIA World Factbook and Numbeo. See Appendix B for more
details.

> CIACPIdata<-merge(CIAdata1, CPIdata)

The merge function identifies variables with the same name and uses them to match up the
observations. In this example both datasets contain a variable named country, so R automatically
uses this variable to match the observations. If your datasets have more than one common variable,
R matches the observations by the unique combinations of all of the common variables.

If the names of the common variables are not identical in the two datasets, the simplest solution
is to rename the variables as explained in Section 3.2. Alternatively you can use the by.x and
by.y arguments to specify which variables to use for matching the observations. For example, to
merge two datasets where the common variable is named var1 in the first dataset and VAR1 in
the second dataset, use the command:
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> newdataset<-merge(dataset1, dataset2, by.x="var1", by.y="VAR1")

When you combine two datasets with the merge function, R automatically excludes any unmatched
observations that appear in only one of the datasets. In Figure 4.3c, you can see that Slovakia (which
appears only in CIAdata1) and Italy and Croatia (which appear only in CPIdata) are all excluded
from the merged dataset.

The all, all.x and all.y arguments allow you to control how R deals with any unmatched
observations. To keep all unmatched observations, set the all argument to T.

> allCIACPIdata<-merge(CIAdata1, CPIdata, all=T)

The results are shown in Table 4.3d. Notice that Slovakia, Italy and Croatia have now been
included and where corresponding data is missing, the missing data symbol NA has been substituted.
Alternatively, you can use the all.x and all.y arguments to include unmatched cases from just
one of the datasets instead of both. So the command:

> allCIAGPIdata<-merge(CIAdata1, CPIdata, all.x=T)

includes the data for Slovakia but not Italy and Croatia, while the command:

> allCIAGPIdata<-merge(CIAdata1, CPIdata, all.y=T)

includes the data for Italy and Croatia but not Slovakia.

When there are multiple matches for an observation, R creates an observation in the final dataset
for every possible match. This is known as the Cartesian product. Consider the bigcats and

(a) bigcats
(b) endangered

(c) Merged dataset

Figure 4.4: Datasets giving information about four big cat species. See Appendix B for
more details.
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endangered datasets shown in Figure 4.4a and 4.4b. Both datasets have two observations with
a name of ‘Leopard’. When these two datasets are merged by the Name variable, the final dataset
(shown in Figure 4.4c) contains four rows for the Leopard data.

To ensure that you get the desired result from a merge, make sure that you are using a common
variable or variables that allow R to correctly identify matches. You may also need to remove
duplicate observations beforehand, as described in Section 3.10.

R automatically sorts the merged dataset by the same variables that were used to match the
observations. If you want to prevent this, set the sort argument to F.

> newdataset<-merge(dataset1, dataset2, sort=F)

4.4 Stacking data

Stacking a dataset means to convert it from unstacked form to stacked form.

To illustrate the difference between the two forms, consider the grades1 and grades2 datasets
shown in Figure 4.5. The grades1 dataset is in unstacked form. It gives the test results of fifteen
students, arranged in separate columns according to which class they belong to. The grades2
dataset gives the same data in stacked form. Here the data is arranged in two columns, the first
giving the test result and the second identifying which class the student belongs to.

(a) grades1 (unstacked form)
(b) grades2 (stacked form)

Figure 4.5: The same data in stacked and unstacked form

To convert a dataset from unstacked to stacked form, use the stack function.
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> grades2<-stack(grades1)

To stack only some of the columns in your dataset, use the select argument. For example, to
stack only the ClassA and ClassC variables, use the command:

> newdataset<-stack(grades1, select=c("ClassA", "ClassC"))

Note that you can only stack numeric variables.

The stack function automatically names the new variables ‘values’ and ‘ind’, but you can
change the names to something more informative with the names function.

> names(grades2)<-c("Result", "Class")

4.5 Unstacking data

Unstacking a dataset means to convert it from stacked form to unstacked form. This is the opposite
procedure to stacking a dataset.

You can unstack a dataset with the unstack function. If your dataset has only two variables, the
first of which gives the data values and the second of which identifies which group the observation
belongs to (like the grades2 dataset), use the function as shown.

> grades1<-unstack(grades2)

If your dataset has more than two variables or the variables are in reverse order then you must
specify which variables you want to unstack, as shown below.

> unstackeddata<-unstack(stackeddata, values~groups)

Here values is the names of the variable containing the data values and groups is the name of
the variable that identifies which group the observation belongs to.

For example, to unstack the Sepal.Width column in the iris dataset (included with R) to
create a new dataset with a column for each iris species, use the command:

> sepalwidths<-unstack(iris, Sepal.Width~Species)

If you unstack a variable that does not have an equal number of values in each group, R cannot
arrange the values to create a new data frame. In this case, R creates a list object instead of a
data frame. However, you can still access each group of values in the new object by using the dollar
notation as shown.

> unstackeddata$groupA
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4.6 Reshaping a dataset

Reshaping a dataset is also known as rotating or transforming a dataset. It usually applies to datasets
where repeat measurements have been taken, but it is useful in other situations too. Reshaping is
the process of changing between long form (with repeat measurements in separate columns) and
wide form (with repeat measurements in the same column).

To illustrate the difference between the long and wide forms, consider the dataset shown in Figure
4.6a, which gives cubic resistance measurements for four concrete formulations taken at three, seven
and fourteen days after setting. This dataset is in wide form. Figure 4.6b shows the same dataset
in long form, with all the measurements in one variable and another variable giving the day that the
measurement was taken.

(a) resistance (wide form)

(b) resistance2 (long form)

Figure 4.6: The resistance dataset in long and wide forms. See Appendix B for more
details.

The reshape functions allows you to convert a dataset from wide to long form. For example, to
convert the resistance dataset to long form, use the command:

> resistance2<-reshape(resistance, direction="long",
varying=list(c("Day3", "Day7", "Day14")), times=c(3, 7, 14),
idvar="Formula", v.names="Resistance", timevar="Day")
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Use the varying argument to specify the variables that you want to combine into one column. Use
the times argument to give the new time values or replicate numbers for each of these variables.
Note that the times can be character values instead of numeric. Use the idvar argument to
specify the variable that will group the records together. The v.names and timevar arguments
are optional and give the names for the new variables.

The new dataset is shown in Figure 4.6b.

You can also use the reshape function to perform the opposite procedure, i.e. converting a dataset
from long to wide form.

Consider the vitalsigns dataset shown in Figure 4.7a, which gives measurements of systolic
blood pressure, diastolic blood pressure and pulse for four patients. All of the measurements are
held in the result variable, while the test variable identifies the parameter.

(a) vitalsigns (long form)

(b) vitalsigns2 (wide form)

Figure 4.7: The vitalsigns dataset in long and wide forms. See Appendix B for more
details.

To split the different types of measurements in to separate columns, use the command:

> vitalsigns2<-reshape(vitalsigns, direction="wide",
v.names="result", timevar="test", idvar="subject")

Use the v.names argument to specify the variable that you want to separate into different columns.
Use the timevar argument to specify the variable that indicates which column the value belongs
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to (i.e. the variable giving the time point, replicate number or category for the record). Use the
idvar argument to specify which variable is used to group the records together.

Figure 4.7b shows the new wide form dataset. Notice that R automatically generates names for
the new variables. Alternatively you can specify the new names with the varying argument, as
shown below.

> vitalsigns2<-reshape(vitalsigns, direction="wide",
v.names="result", timevar="test", idvar="subject",
varying=list(c("SysBP", "DiaBP", "Pulse")))

Task Command

Append datasets vertically rbind(dataset1, dataset2)

Append datasets horizontally cbind(dataset1, dataset2)

Merge datasets merge(dataset1, dataset2)

Stack dataset stack(dataset, select=c("var1", "var2",
"var3"))

Unstack dataset unstack(dataset, values~groups)

Reshape (wide to long) reshape(dataset, direction="long",
varying=list(c("var1", "var2",
"var3")), times=c(t1,t2,t3),
idvar="identifier")

Reshape (long to wide) reshape(dataset, direction="wide",
v.names="values", timevar="groups",
idvar="identifier")

Chapter Summary: Combining and restructuring datasets
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Chapter 5

Summary statistics for continuous
variables

This chapter explains how to calculate basic summary statistics for continuous variables.

Section 5.1 covers univariate statistics, meaning statistics that are calculated from a single variable.
This includes measures of location such as the mean and median, and measures of dispersion such
as the variance, standard deviation and range. Section 5.2 shows how you can calculate these
summaries for different groups of observations.

Section 5.3 explains how to calculate measures of the association between two or more continuous
variables. This includes the covariance, correlation and Spearman’s correlation. It also explains how
to perform a hypothesis test to check whether a correlation is statistically significant.

Sections 5.4 and 5.5 show how to compare a sample of continuous values with a theoretical distri-
bution using the Shapiro-Wilk and Kolmogorov-Smirnov tests.

Finally, Section 5.6 shows how to calculate confidence and prediction intervals.

This chapter uses the trees, iris, warpbreaks and PlantGrowth datasets, which are in-
cluded with R, and the bottles dataset, which is available from the website. It is helpful to
become familiar with them before beginning the chapter. For the datasets included with R, you can
view additional information about them by entering help(datasetname). For more information
about the bottles dataset, see Appendix B.

5.1 Univariate statistics

To produce a summary of all the variables in a dataset, use the summary function. The function
summarises each variable in a manner suitable for its class. For numeric variables it gives the mean,
median, range and interquartile range. For factor variables it gives the number in each category. If
a variable has any missing values, it will tell you how many.

> summary(iris)
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Sepal.Length Sepal.Width Petal.Length Petal.Width Species
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50
Median :5.800 Median :3.000 Median :4.350 Median :1.300 virginica :50
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

To calculate a particular statistic for a single variable, use the relevant function from Table 5.1.

Statistic Function

Mean* mean
Median* median
Standard deviation* sd
Median absolute deviate* mad
Variance* var
Maximum value* max
Minimum value* min
Interquartile range* IQR
Range range
Quantiles quantile
Tukey five-number summary fivenum
Sum* sum
Product* prod
Number of observations* length

Table 5.1: Functions for summarising continuous variables. Those marked with an asterisk
give a single value as output.

For example, to calculate the mean tree height, use the command:

> mean(trees$Height)
[1] 76

If the variable has any missing data values, set the na.rm argument to T as shown below. This tells
R to ignore any missing values when calculating the statistic. Otherwise the result will be either
another missing value or an error message, depending on the function.

> mean(dataset$variable, na.rm=T)

To calculate a particular statistic for each of the variables in a dataset simultaneously, use the
sapply function with any of the statistics in Table 5.1.

> sapply(trees, mean)
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Girth Height Volume
13.24839 76.00000 30.17097

Again, if the dataset has any missing values then set the na.rm argument to T.

> sapply(dataset, mean, na.rm=T)

If any of the variables in your dataset are non-numeric, the sapply function behaves inconsistently.
For example, the command below attempts to calculate the maximum value for each of the variables
in the iris dataset. R returns an error message because the fifth variable in the dataset is a factor
variable.

> sapply(iris, max)
Error in Summary.factor(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,

1L, :
max not meaningful for factors

To avoid this problem, exclude any non-numeric variables from the dataset by using bracket notation
or the subset function, as described in Sections 1.7 and 3.11.

> sapply(iris[-5], max)

Sepal.Length Sepal.Width Petal.Length Petal.Width
7.9 4.4 6.9 2.5

5.2 Statistics by group

You may want to group the values of a numeric variable according to the levels of a factor and
calculate a statistic for each group. There are two functions that allow you to do this, called
tapply and aggregate.

You can use the tapply function with any of the statistics in Table 5.1. For example, to calculate
the mean sepal width for each species for the iris dataset:

> tapply(iris$Sepal.Width, iris$Species, mean)

setosa versicolor virginica
3.428 2.770 2.974

If the numeric variable has any missing data, set the na.rm argument to T.

> tapply(dataset$variable, dataset$factor1, mean, na.rm=T)
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You can also group the data by more than one factor, by nesting the factor variables inside the
list function. R calculates the statistic separately for each combination of factor levels. For
example, to display the median number of breaks for each combination of tension and wool type for
the warpbreaks dataset:

> tapply(warpbreaks$breaks, list(warpbreaks$wool,
warpbreaks$tension), median)

L M H
A 51 21 24
B 29 28 17

When using more than one grouping variable, you can only use statistical functions that give a single
value as output (i.e. those marked with an asterisk in Table 5.1).

Alternatively you can also use the aggregate function to summarise variables by groups. Using
the aggregate function has the advantage that you can summarise several continuous variables
simultaneously. It can also be used with statistical functions that give more than one value as output
(such as range and quantile). However the results are displayed a little differently, so it is a
matter of personal preference whether to use tapply or aggregate.

To calculate the mean sepal width for each species, use the aggregate function as shown.

> aggregate(Sepal.Width~Species, iris, mean)

Species Sepal.Width
1 setosa 3.428
2 versicolor 2.770
3 virginica 2.974

Again you can also use more than one grouping variable. For example, to calculate the median
number of breaks for each combination of wool and tension for the warpbreaks dataset:

> aggregate(breaks~wool+tension, warpbreaks, median)

wool tension breaks
1 A L 51
2 B L 29
3 A M 21
4 B M 28
5 A H 24
6 B H 17

To summarise two or more continuous variables simultaneously, nest them inside the cbind function
as shown.

> aggregate(cbind(Sepal.Width, Sepal.Length)~Species, iris, mean)
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Species Sepal.Width Sepal.Length
1 setosa 3.428 5.006
2 versicolor 2.770 5.936
3 virginica 2.974 6.588

You can save the output to a new data frame, as shown below. This allows you to use the results
for further analysis.

> sepalmeans<-aggregate(cbind(Sepal.Width, Sepal.Length)~Species,
iris, mean)

Remember to set the na.rm argument to T if any of the continuous variables have missing values.

5.3 Measures of association

The association between two variables is a relationship between them, such that if you know
the value of one variable, it tells you something about the value of the other.50 Positive
association means that as the value of one variable increases, the value of the other also
tends to increase. Negative association means that as the value of one variable increases,
the value of the other tends to decrease. The most commonly used measures of association are:

Covariance A measure of the linear association between two continuous variables. Covari-
ance is scale dependent, meaning that the value depends on the units of measurements
used for the variables. For this reason, it is difficult to directly interpret the covariance
value. The higher the absolute covariance between two variables, the greater the associ-
ation. Positive values indicate positive association and negative values indicate negative
association.18

Pearson’s correlation coefficient (denoted r) A scale independent measure of association,
meaning that the value is not affected by the unit of measurement. The correlation can
take values between -1 and 1, where -1 indicates perfect negative correlation, 0 indicates
no correlation and 1 indicates perfect positive correlation. The correlation coefficient
only measures linear relationships, so it is important to check for non-linear relationships
with a scatter plot (see Section 8.7).6

Spearman’s rank correlation coefficient A non-parametric alternative to the Pearson’s cor-
relation coefficient, which measures non-linear as well as linear relationships. It also takes
values between -1 (perfect negative correlation) and 1 (perfect positive correlation), with
a value of 0 indicating no correlation.27,53 Spearman’s correlation can be calculated for
ranked as well as continuous data.

Association
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5.3.1 Covariance

To calculate the covariance between two variables, use the cov function.

> cov(trees$Height, trees$Volume)
[1] 62.66

You can also create a covariance matrix for a whole dataset, which shows the covariance for each
pair of variables.

> cov(trees)

Girth Height Volume
Girth 9.847914 10.38333 49.88812
Height 10.383333 40.60000 62.66000
Volume 49.888118 62.66000 270.20280

From the output you can see that the covariance between tree girth and tree height is 10.38. The
values along the diagonal of the matrix give the variance of the variables. For example, the tree
volumes have a variance of 270.2.

If your dataset has any non-numeric variables, remember to exclude them using bracket notation or
the subset function. Otherwise R will display an error message.

> cov(iris[-5])

If any of the variables have missing values, set the use argument to "pairwise" as shown below.
Otherwise the covariance matrix will also have missing values.

> cov(dataset, use="pairwise")

Another useful option for the use argument is "complete". This option completely excludes
observations which have missing values for any of the variables, while "pairwise" excludes only
those observations which have missing values for either of the variables in a given pair.31 Enter
help(cov) to view more details about these options.

5.3.2 Pearson’s correlation coefficient

To calculate the Pearson’s correlation coefficient between two variables, use the cor function.

> cor(trees$Girth, trees$Volume)
[1] 0.9671194

The value is very close to 1, which indicates a very strong positive correlation between tree girth
and tree volume. This means that trees with a larger girth tend to have a larger volume.
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You can also create a correlation matrix for a whole dataset. Remember to exclude any non-numeric
variables using bracket notation or the subset function.

> cor(trees)

Girth Height Volume
Girth 1.0000000 0.5192801 0.9671194
Height 0.5192801 1.0000000 0.5982497
Volume 0.9671194 0.5982497 1.0000000

Notice that the values along the diagonal of the matrix are all equal to 1, because a variable always
correlates perfectly with itself.

Again if any of the variables have missing values, set the use argument to "pairwise".

> cor(dataset, use="pairwise")

5.3.3 Spearman’s rank correlation coefficient

The cor function can also calculate the Spearman’s rank correlation coefficient between two vari-
ables. Set the method argument to "spearman", as shown below.

> cor(trees$Girth, trees$Volume, method="spearman")
[1] 0.9547151

You can also create a correlation matrix for a whole dataset. Remember to exclude any non-numeric
variables using bracket notation.

> cor(trees, method="spearman")

Girth Height Volume
Girth 1.0000000 0.4408387 0.9547151
Height 0.4408387 1.0000000 0.5787101
Volume 0.9547151 0.5787101 1.0000000

If any of the variables have missing values, set the use argument to "pairwise" as shown below.

> cor(dataset$var1, dataset$var2, method="spearman", use="pairwise")



66 Chapter 5. Summary statistics for continuous variables

5.3.4 Hypothesis test of correlation

A hypothesis test of correlation determines whether a correlation is statistically significant. The
null hypothesis for the test is that the population correlation is equal to zero, meaning that
there is no correlation between the variables. The alternative hypothesis is that the population
correlation is not equal to zero, meaning that there is some correlation between the variables.
You can also perform a one-sided test, where the alternative hypothesis is either that the
population correlation is greater than zero (the variables are positively correlated) or that the
population correlation is less than zero (the variables are negatively correlated).51

See Chapter 10 for more details about hypothesis testing.

Hypothesis test of correlation

You can perform a test of the correlation between two variables with the cor.test function.

> cor.test(dataset$var1, dataset$var2)

By default R performs a test of the Pearson’s correlation. If you would prefer to test the Spearman’s
correlation, set the method argument to "spearman" as shown.

> cor.test(dataset$var1, dataset$var2, method="spearman")

By default R performs a two-sided test, but you can adjust this by setting the alternative
argument to "less" or "greater" as required.

> cor.test(dataset$var1, dataset$var2, alternative="greater")

The output includes a 95% confidence interval for the correlation estimate. To adjust the size of
this interval, use the conf.level argument.

> cor.test(dataset$var1, dataset$var2, conf.level=0.99)

Example 5.1. Hypothesis test of correlation using the trees dataset

Suppose you want to perform a hypothesis test to help determine whether the correlation between
tree girth and tree volume is statistically significant.

To perform a two-sided test of the Pearson’s product moment correlation between tree girth and
volume at the 5% significance level, use the command:

> cor.test(trees$Girth, trees$Volume)

The output is shown below.
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Pearson’s product-moment correlation

data: trees$Girth and trees$Volume
t = 20.4783, df = 29, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.9322519 0.9841887
sample estimates:

cor
0.9671194

The correlation is estimated at 0.967, with a 95% confidence interval of 0.932 to 0.984. This means
that as tree girth increases, tree volume tends to increase also.

Since the p-value of 2.2e-16 is much less than the significance level of 0.05, we can reject the
null hypothesis that there is no correlation between girth and volume, in favour of the alternative
hypothesis that the two are correlated.

5.4 Shapiro-Wilk test

The Shapiro-Wilk test is a hypothesis test which can help to determine whether a sample has
been drawn from a normal distribution. The null hypothesis for the test is that the sample is
drawn from a normal distribution and the alternative hypothesis is that it is not.25,42

Shapiro-Wilk test

You can perform a Shapiro-Wilk test with the shapiro.test function.

> shapiro.test(dataset$variable)

Example 5.2. Shapiro-Wilk test using the trees dataset

Suppose you want to perform a Shapiro-Wilk test to help determine whether the tree heights follow
a normal distribution. You will use a 5% significance level. To perform the test, use the command:

> shapiro.test(trees$Height)

Shapiro-Wilk normality test

data: trees$Height
W = 0.9655, p-value = 0.4034
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From the output we can see that the p-value for the test is 0.4034. Since this is not less than our
significance level of 0.05, we cannot reject the null hypothesis. This means there is no evidence
that the tree heights do not follow a normal distribution.

5.5 Kolmogorov-Smirnov test

A one-sample Kolmogorov-Smirnov test helps to determine whether a sample is drawn from a
particular theoretical distribution. It has the null hypothesis that the sample is drawn from the
distribution and the alternative hypothesis that it is not.
A two-sample Kolmogorov-Smirnov test helps to determine whether two samples are drawn
from the same distribution. It has the null hypothesis that they are drawn from the same
distribution and the alternative hypothesis that they are not.43

Kolmogorov-Smirnov test

You can perform a Kolmogorov-Smirnov test with the ks.test function. To perform a one-sample
test with the null hypothesis that the sample is drawn from a normal distribution with a mean of
100 and a standard deviation of 10, use the command:

> ks.test(dataset$variable, "pnorm", 100, 10)

To test a sample against another theoretical distribution, replace "pnorm" with the relevant cumu-
lative distribution function. A list of functions for standard probability distributions is given in Table
7.1 on page 84. You must also substitute the mean and standard deviation with any parameters
relevant to the distribution. Use the help function to check the parameters for the distribution of
interest.

To perform a two-sample test to determine whether two samples are drawn from the same distri-
bution, use the command:

> ks.test(dataset$sample1, dataset$sample2)

If your data is in stacked form (with the values for both samples in one variable), you must first
unstack the dataset as explained in Section 4.5.

Example 5.3. One-sample Kolmogorov-Smirnov test using bottles data

Consider the bottles dataset, which is available from the website. The dataset gives data for a
sample of 20 bottles of soft drink taken from a filling line. The dataset contains one variable named
Volume, which gives the volume of liquid in millilitres for each of the bottles.

The bottle filling volume is believed to follow a normal distribution with a mean of 500 ml and a
standard deviation of 25 ml. Suppose you wish to use a one-sample Kolmogorov-Smirnov test to
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determine whether the data is consistent with this theory. The test has the null hypothesis that the
bottles volumes are drawn from the described distribution, and the alternative hypothesis that they
are not. A significance level of 0.05 will be used for the test.

To perform the test, use the command:

> ks.test(bottles$Volume, "pnorm", 500, 25)

This gives the following output:

One-sample Kolmogorov-Smirnov test

data: bottles$Volume
D = 0.2288, p-value = 0.2108
alternative hypothesis: two-sided

From the output we can see that the p-value for the test is 0.2108. As this is not less that the
significance level of 0.05, we cannot reject the null hypothesis. This means that there is no evidence
that the bottle volumes are not drawn from the described normal distribution.

Example 5.4. Kolmogorov-Smirnov two-sample test using the PlantGrowth data

Consider the PlantGrowth dataset (included with R), which gives the dried weight of thirty
batches of plants, each of which received one of three different treatment. The weight variable
gives the weight of the batch and the groups variable gives the treatment received (ctrl, trt1
or trt2).

Suppose you want to use a two-sample Kolmogorov-Smirnov test to determine whether batch weight
has the same distribution for the treatment groups trt1 and trt2.

First you need to unstack the data with the unstack function, as described in Section 4.5.

> PlantGrowth2<-unstack(PlantGrowth)

Once the data is in unstacked form, perform the test as shown.

> ks.test(PlantGrowth2$trt1, PlantGrowth2$trt2)

This gives the following output:

Two-sample Kolmogorov-Smirnov test

data: PlantGrowth2$trt1 and PlantGrowth2$trt2
D = 0.8, p-value = 0.002057
alternative hypothesis: two-sided

The p-value of 0.002057 is less than the significance level of 0.05. This means that there is evidence
to reject the null hypothesis that the batch weight distribution is the same for both treatment groups,
in favour of the alternative hypothesis that the batch weight distribution is different for the two
treatment groups.
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5.6 Confidence intervals and prediction intervals

A confidence interval for the population mean gives an indication of how accurately the sample
mean estimates the population mean. A 95% confidence interval is defined as an interval
calculated in such a way that if a large number of samples were drawn from a population and
the interval calculated for each of these samples, 95% of the intervals will contain the true
population mean value.40

A prediction interval gives an indication of how accurately the sample mean predicts the value
of a further observation drawn from the population.41

Confidence and prediction intervals

The simplest way to obtain a confidence interval for a sample mean is with the t.test function,
which provides one with the output. Section 10.1 discusses the function in more detail. If you are
only interested in obtaining a confidence interval, use the command:

> t.test(trees$Height)

One Sample t-test

data: trees$Height
t = 66.4097, df = 30, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
73.6628 78.3372
sample estimates:
mean of x

76

From the results you can see that the mean tree height is 76 ft, with a 95% confidence interval of
73.7 to 78.3 ft.

By default R calculates a 95% interval. For a different size confidence interval such as 99%, adjust
the conf.level argument as shown.

> t.test(trees$Height, conf.level=0.99)

You can also calculate one-sided confidence intervals. For an upper confidence interval, set the
alternative argument to "less". For a lower confidence interval, set it to "greater".

> t.test(dataset$variable, alternative="greater")

To calculate a prediction interval for the tree heights, use the command:
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> predict(lm(trees$Height~1), interval="prediction")[1,]

fit lwr upr
76.0000 62.7788 89.2212
Warning message:
In predict.lm(lm(trees$Height ~ 1), interval = "prediction") :

Predictions on current data refer to _future_ responses

From the output you can see the the prediction interval for the tree heights is 62.8 to 89.2 ft.

Again you can adjust the confidence level with the level argument as shown.

> predict(lm(dataset$variable~1), interval="prediction",
level=0.99)[1,]

The commands for creating prediction intervals use the lm and predict functions. You will learn
more about these functions in Chapter 11, which will help you to understand what these complex
commands are doing. For now, you can just use them by substituting the appropriate dataset and
variable names.
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Task Command

Statistic for each variable sapply(dataset, statistic)

Statistic by group tapply(dataset$var1, dataset$factor1,
statistic)

Statistic by group aggregate(variable~factor, dataset,
statistic)

Covariance cov(dataset$var1, dataset$var2)

Covariance matrix cov(dataset)

Pearson’s correlation
coefficient

cor(dataset$var1, dataset$var2)

Correlation matrix cor(dataset)

Spearman’s rank correlation
coefficient

cor(dataset$var1, dataset$var2,
method="spearman")

Spearman’s correlation
matrix

cor(dataset, method="spearman")

Hypothesis test of correlation cor.test(dataset$var1, dataset$var2)

Shapiro-Wilk test shapiro.test(dataset$variable)

One-sample
Kolmogorov-Smirnov test

ks.test(dataset$sample1, "pnorm", mean,
sd)

Two-sample
Kolmogorov-Smirnov test

ks.test(dataset$sample1,
dataset$sample2)

Confidence interval t.test(dataset$variable)

Prediction interval predict(lm(dataset$variable 1),
interval="prediction")[1,]

Chapter summary: Summary statistics for continuous variables
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Chapter 6

Tabular data

This chapter explains how summarise and calculate statistics for categorical variables.

Section 6.1 explains how to create frequency and contingency tables to summarise categorical data,
and how to store the results as a table object.

Section 6.2 explains how to perform a chi-square goodness-of-fit test to compare categorical data
with a hypothesised distribution.

Section 6.3 explains how to perform a chi-square test of association to identify a relationship
between two or more categorical variables. Section 6.4 explains how to perform a Fisher’s exact
test of association for a two-by-two contingency table.

This chapter uses the warpbreaks and esoph datasets and the Titanic table object, which are
included with R. You can view more information about them by entering help(datasetname).
It also uses the people2 dataset (which is a modified version of the people dataset introduced
in Chapter 3), and the apartments dataset. These are both available from the website and
described in Appendix B.

6.1 Frequency tables

Frequency tables summarise a categorical variable by displaying the number of observations belong-
ing to each category. Frequency tables for two or more categorical variables (known as contingency
tables or cross tabs) summarise the relationship between two or more categorical variables by dis-
playing the number of observations that fall into each combination of categories.

In R, a table is also a type of object that holds tabulated data. There are some example table
objects included with R, such as HairEyeColor and Titanic.

To create a one-dimensional frequency table showing the number of observations for each level of
a factor variable, use the table function as shown.

> table(people2$Eye.Colour)

Blue Brown Green
7 6 3
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Whilst R allows you to create tables from any type of variable, they are only really meaningful
for factor variables with a relatively small number of values. If you want to include a continuous
variable, first divide it into categories with the cut function, as explained in Section 3.5.

To add an additional column to the table showing the numbers of missing values (if there are any),
set the useNA argument as shown.

> table(dataset$factor1, useNA="ifany")

To create a two-dimensional contingency table, give two variables as input.

> table(people2$Eye.Colour, people2$Sex)

Female Male
Blue 3 4
Brown 1 5
Green 2 1

Similarly you can create contingency tables for three or more variables.

> table(people2$Eye.Colour, people2$Height.Cat, people2$Sex)

, , = Female

Medium Short Tall
Blue 3 0 0
Brown 0 0 0
Green 0 2 0

, , = Male

Medium Short Tall
Blue 2 0 2
Brown 4 0 1
Green 0 0 1

To save a table as a table object, assign the output of the table function to a new object name
as shown.

> sexeyetable<-table(people2$Eye.Colour, people2$Sex)

Once you have created a table object, you can use it with functions such as pie or chisq.test
to create output that is relevant to tabular data. You will learn about some of these functions later
in this chapter.

There are also a few functions which allow you to present table objects in different ways. These
include ftable, prop.table and addmargins.
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The ftable function displays your table in a more compact way, which is useful for tables with
three or more dimensions.

> ftable(Titanic)

Survived No Yes
Class Sex Age
1st Male Child 0 5

Adult 118 57
Female Child 0 1

Adult 4 140
2nd Male Child 0 11

Adult 154 14
Female Child 0 13

Adult 13 80
3rd Male Child 35 13

Adult 387 75
Female Child 17 14

Adult 89 76
Crew Male Child 0 0

Adult 670 192
Female Child 0 0

Adult 3 20

The prop.table function displays the table with each cell count expressed as a proportion of the
total count.

> prop.table(sexeyetable)

Female Male
Blue 0.1875 0.2500
Brown 0.0625 0.3125
Green 0.1250 0.0625

To display the cell counts expressed as a proportion of the row or column totals instead of the grand
total, set the margin argument to 1 for rows, 2 for columns and 3+ for higher dimensions.

> prop.table(sexeyetable, margin=2)

Female Male
Blue 0.5000000 0.4000000
Brown 0.1666667 0.5000000
Green 0.3333333 0.1000000

To display percentages, multiply the whole table by 100. You can also use the round function to
round all of the numbers in the table.

> round(prop.table(sexeyetable)*100)
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Female Male
Blue 19 25
Brown 6 31
Green 12 6

The addmargins function displays your table with row and column totals.

> addmargins(sexeyetable)

Female Male Sum
Blue 3 4 7
Brown 1 5 6
Green 2 1 3
Sum 6 10 16

To create a table from a data frame containing count data, such as the warpbreaks dataset, use
the xtabs function as shown.

> xtabs(breaks~wool+tension, warpbreaks)

tension
wool L M H

A 401 216 221
B 254 259 169

If the data frame has more than one column of count data, put them inside the list function as
shown.

> xtabs(list(counts1, counts2)~factor1, dataset)

You can create a table object by assigning the output of the xtabs function to a new object name.

> warpbreakstable<-xtabs(breaks~wool+tension, warpbreaks)

To create a data frame of count data from a table object, use the as.data.frame function.

> as.data.frame(Titanic)

Class Sex Age Survived Freq
1 1st Male Child No 0
2 2nd Male Child No 0
3 3rd Male Child No 35
4 Crew Male Child No 0
5 1st Female Child No 0
6 2nd Female Child No 0
7 3rd Female Child No 17
8 Crew Female Child No 0
9 1st Male Adult No 118
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10 2nd Male Adult No 154
11 3rd Male Adult No 387
12 Crew Male Adult No 670
13 1st Female Adult No 4
14 2nd Female Adult No 13
15 3rd Female Adult No 89
16 Crew Female Adult No 3
17 1st Male Child Yes 5
18 2nd Male Child Yes 11
19 3rd Male Child Yes 13
20 Crew Male Child Yes 0
21 1st Female Child Yes 1
22 2nd Female Child Yes 13
23 3rd Female Child Yes 14
24 Crew Female Child Yes 0
25 1st Male Adult Yes 57
26 2nd Male Adult Yes 14
27 3rd Male Adult Yes 75
28 Crew Male Adult Yes 192
29 1st Female Adult Yes 140
30 2nd Female Adult Yes 80
31 3rd Female Adult Yes 76
32 Crew Female Adult Yes 20

6.2 Chi-square goodness-of-fit test

The chi-square goodness-of-fit test (also known as the Pearson’s chi-squared test or χ2 test)
allows you to compare categorical data with a theoretical distribution. It has the null hypothesis
that the data follows the specified distribution, and the alternative hypothesis that it does not.
The test is only suitable if sufficient data is available, which is commonly defined as each
category having an expected frequency (under the null hypothesis) of at least five.7

The test should not be confused with the chi-square test of association (see Section 6.3), which
helps to determine whether two or more categorical variables are associated.
For more details about hypothesis testing, see Chapter 10.

Chi-square goodness-of-fit test

You can perform a chi-square goodness-of-fit test with the chisq.test function. If you have a
one-dimensional table object, you can test it against the uniform distribution (i.e. against the null
hypothesis that all categories are equally likely to occur) as shown.

> chisq.test(tableobject)

If you are using raw data, nest the table function inside the chisq.test function as shown.
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> chisq.test(table(dataset$factor1))

To test the data against a different theoretical distribution, use the p argument to give a list of
expected relative frequencies under the null hypothesis. You must give the same number of relative
frequencies as there are level in your table, and they must sum to one.

For example, to test the hypothesis that 10% of the population belong to the first category, 40% to
the second category, 40% to the third category and 10% to the fourth category, use the command:

> chisq.test(tableobject, p=c(0.1, 0.4, 0.4, 0.1))

Example 6.1. Chi-square goodness-of-fit test using the apartments data

Consider the apartments dataset (available from the website and described in Appendix B),
which give details of 39 one-bedroom apartments advertised for rent in a particular area of the UK
in October 2012. The Price.Cat variable gives the rental price category for the apartment.

To create a table showing the number of apartments in each price category, use the command:

> table(apartments$Price.Cat)

£500-550 £551-600 £601-650 £651+

7 14 11 7

It is believed that 20% of the apartments in this area have a rental price less than £550, 30% have
a price between £551 and £600, 30% a price between £601 and £650 and 20% have a rental price
greater than £650.

Suppose that you want to use a chi-square goodness-of-fit test to determine whether the data
is consistent with the hypothesised price distribution. The test has the null hypothesis that the
described price distribution is correct, and the alternative hypothesis that it is not. A significance
level of 0.05 is used.

To perform the test, use the command:

> chisq.test(table(apartments$Price.Cat), p=c(0.2, 0.3, 0.3, 0.2))

This gives the output:

Chi-squared test for given probabilities

data: table(apartments$Price.Cat)
X-squared = 0.6581, df = 3, p-value = 0.883

The p-value of 0.883 is not less than the significance level of 0.05, so we cannot reject the null
hypothesis. This mean that the data is consistent with the hypothesised price distribution.
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6.3 Chi-square test of association

The chi-square test of association helps to determine whether two or more categorical variables
are associated. The test has the null hypothesis that the variables are independent and the
alternative hypothesis that they are not independent (i.e at least two of the variables are
associated).22 The test is only suitable if there is sufficient data, which is commonly defined
as all table cells having expected counts (under the null hypothesis) of at least five.7 An
alternative test for two-by-two tables is Fisher’s exact test, described in Section 6.4.

Chi-square test of association

The summary function performs a chi-square test of association when given a table object as input.
If you have already created a table object, use the summary function directly.

> summary(tableobject)

If you have raw data, nest the table function inside the summary function as shown below.

> summary(table(dataset$var1, dataset$var2, dataset$var3))

Example 6.2. Chi-square test of association using people2 data

Suppose you want to use a chi-square test of association to determine whether sex and eye colour
are associated, using the people2 dataset.

If you still have the sexeyetable object created in Section 6.1, use the command:

> summary(sexeyetable)

Alternatively you can perform the test using the raw data, as shown below.

> summary(table(people2$Sex, people2$Eye.Colour))

Number of cases in table: 16
Number of factors: 2
Test for independence of all factors:

Chisq = 2.2857, df = 2, p-value = 0.3189
Chi-squared approximation may be incorrect

As the p-value of 0.3189 is not less than the significance level of 0.05, we cannot reject the null
hypothesis that sex and eye colour are independent. This means that there is no evidence of an
association between the two.

The warning Chi-squared approximation may be incorrect tells us that as some cells
have expected counts less than five. This means that the results may be unreliable and should be
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interpreted with caution. A discussion of Chi-square tests with small expected counts can be found
on page 39 of The Analysis of Contingency Tables, by B.S. Everitt.3

Example 6.3. Chi-square test of association using the esoph data

Consider the esoph dataset, which is included with R. The dataset gives the results of a case-
control study of oesophageal cancer. You can view more details by entering help(esoph). The
agegp, alcgp and tobgp variables list categories for the subjects’ age, alcohol consumption and
smoking habits. The variables ncases and ncontrols give the number of subjects with and
without oesophageal cancer that fall into each of these categories.

Suppose you want to use a chi-square test of association to determine where there is any asso-
ciation between smoking habits and oesophageal cancer. The test has the null hypothesis that
smoking habits and oesophageal cancer are independent, and the alternative hypothesis that they
are associated. A significance level of 0.05 will be used.

As the dataset contains data which is already expressed as counts, you can use the xtabs function
to create a table giving the number of subjects with and without oesophageal cancer that fall into
each category of smoking habits.

> tobacco<-xtabs(cbind(ncases, ncontrols)~tobgp, esoph)
> tobacco

tobgp ncases ncontrols
0-9g/day 78 525
10-19 58 236
20-29 33 132
30+ 31 82

To perform the test, use the command:

> summary(tobacco)

Call: xtabs(formula = cbind(ncases, ncontrols) ~ tobgp, data = esoph)
Number of cases in table: 1175
Number of factors: 2
Test for independence of all factors:

Chisq = 18.363, df = 3, p-value = 0.0003702

As the p-value of 0.0003702 is less than the significance level of 0.05, we can reject the null hypoth-
esis that smoking category and oesophageal cancer are independent, in favour of the alternative
hypothesis that the two are associated. This means that there is evidence of a relationship between
smoking habits and oesophageal cancer.
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6.4 Fisher’s exact test

The Fisher’s exact test is used to test for association between two categorical variables which
each have two levels. Unlike the chi-square test of association, it can be used even when very
little data is available. The test has the null hypothesis that the two variables are independent
and the alternative hypothesis that they are not independent.5,10

Fisher’s exact test

You can perform a Fisher’s exact test with the fisher.test function. You can use the function
with a two-by-two table object as shown.

> fisher.test(tableobject)

You can also use raw data as shown below.

> fisher.test(dataset$var1, dataset$var2)

The test results are accompanied by a 95% confidence interval for the odds ratio. You can change
the size of the interval with the conf.level argument.

> fisher.test(dataset$var1, dataset$var2, conf.level=0.99)

Example 6.4. Fisher’s exact test using people2 data

Using the table function, we can see there are more left-handed women than left-handed men in
the people2 dataset.

> table(people2$Sex, people2$Handedness)

Left Right
Female 2 2
Male 0 9

Suppose you want to perform a Fisher’s exact test to determine whether there is any statistically
significant relationship between sex and handedness. The test has the null hypothesis that sex and
handedness are independent, and the alternative hypothesis that they are associated. A significance
level of 0.05 is used.

To perform the test, use the command:

> fisher.test(people2$Sex, people2$Handedness)

Which gives the output:
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Fisher’s Exact Test for Count Data

data: people2$Sex and people2$Handedness
p-value = 0.07692
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.4766247 Inf
sample estimates:
odds ratio

Inf

Since the p-value of 0.07692 is not less than the significance level of 0.05, we cannot reject the null
hypothesis that sex and handedness are independent. This means that there is no evidence of a
relationship between sex and handedness.

Task Command

Contingency table table(dataset$factor1, dataset$factor2)

Compact table ftable(tableobject)

Proportions table prop.table(tableobject)

Table with margins addmargins(tableobject)

Chi-square goodness-of-fit
test

chisq.test(tableobject, p=c(p1, p2, pN))

chisq.test(table(dataset$factor1),
p=c(p1, p2, pN))

Chi-square test of association summary(tableobject)

summary(table(dataset$factor1,
dataset$factor2))

Fisher’s exact test fisher.test(tableobject)

fisher.test(dataset$factor1,
dataset$factor2)

Chapter Summary: Tabular data
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Chapter 7

Probability distributions

The probability density function (pdf) and cumulative distribution function (cdf) are two
ways of specifying the probability distribution of a random variable.

The pdf is denoted f(x) and gives the relative likelihood that the value of the random
variable will be equal to x. The total area under the curve is equal to one.48

The cdf is denoted F (x) and gives the probability that the value of a random variable will be
less than or equal to x. The value of the cdf at x is equal to the area under the curve of the
pdf between −∞ and x. The cdf takes values between zero and one.54

The plots below show the pdf and cdf for the standard normal distribution.

The probability density function and cumulative distribution function

R has functions for all of the well-known standard probability distributions. These allow you to use
R in place of a set of statistical tables. For each distribution, there are the following four functions:
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Probability density function or probability mass function (prefix d)
For discrete distributions, you can use the probability mass function (pmf) to answer questions
of the type ’What is the probability that the outcome will be equal to x? ’. The probability
density function and probability mass function are covered in Section 7.1.

Cumulative distribution function (prefix p)
You can use the cumulative density function (cdf) to answer questions of the type ’If we were
to randomly select a member of a given population, what is the probability that it will have
a value less than x, or a value between x and y? ’. The cumulative distribution function is
covered in Section 7.2.

Inverse cumulative distribution function (prefix q)
Use the inverse cdf to answer questions such as ’Which value do x% of the population
fall below? ’, or ’What range of values do x% of the population fall within? ’. The inverse
cumulative distribution function is covered in Section 7.3.

Random number generator (prefix r)
Use the random number generator to simulate a random sample from a given distribution.
Functions for generating random numbers are covered in Section 7.4.

Distribution Function suffix

Beta beta
Binomial binom
Cauchy cauchy
Chi-square chisq
Exponential exp
F f
Gamma gamma
Geometric geom
Hypergeometric hyper
Logistic logis
Log normal lnorm
Multinomial multinom
Negative binomial nbinom
Normal norm
Poisson pois
Student’s t distribution t
Uniform unif
Weibull weibull

Table 7.1: Standard probability distributions included with R.33 Combine the distribution
suffix with prefix: d for the pdf; p for the cdf; q for the inverse cdf; and r for the random
number generator.
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The function names are formed from a prefix (either d, p, q or r) and a suffix for the relevant
distribution, taken from Table 7.1. For example, the cumulative distribution function for the normal
distribution is called pnorm, and the random number generator for the exponential distribution is
called rexp.

7.1 Probability density functions and probability mass func-
tions

For discrete distributions, use the pmf to find the probability that an outcome or observation is
equal to x. The name of the function is formed by combining the prefix d with the relevant suffix
from Table 7.1 on page 7.1.

When using the pmf, the first argument that the function requires is always the possible outcome
of interest. This is followed by any parameters relevant to the distribution. You can check these
with the help function. The examples below demonstrate how to use the pmfs of the binomial
and Poisson distributions.

For continuous distributions, the pdf gives the relative likelihood of x, which has no direct interpre-
tation. However you can still find the value of the pdf in the same way as for discrete distributions.

In Section 8.10 you will learn how you can use the curve function to plot the pdf of a statistical
distribution.

Example 7.1. Probability mass function for the Binomial distribution

Suppose that a fair die is rolled 10 times. What is the probability of throwing exactly 2 sixes?

You can answer the question using the dbinom function, as shown.

> dbinom(2, 10, 1/6)
[1] 0.29071

The probability of throwing 2 sixes is approximately 0.29 or 29%.

Example 7.2. Probability mass function for the Poisson distribution

The number of lobster ordered in a restaurant on a given day is known to follow a Poisson distribution
with a mean of 20. What is the probability that exactly 18 lobsters will be ordered tomorrow?

You can answer the question with the dpois function as shown.

> dpois(18, 20)
[1] 0.08439355

The probability that exactly 18 lobsters are ordered is 8.4%.
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Example 7.3. Probability density function for the normal distribution

To find the value of the pdf at x =2.5 for a normal distribution with a mean of 5 and a standard
deviation of 2, use the command:

> dnorm(2.5, mean=5, sd=2)
[1] 0.09132454

The value of the pdf at x =2.5 is 0.091.

7.2 Finding probabilities

To find the probability that a randomly selected member of a population will have a value less than
or equal to x, use the cdf for the appropriate distribution. The name of the function is formed by
combining the prefix p with the relevant suffix from Table 7.1 on page 7.1.

For the normal distribution, use the pnorm function. For a standard normal distribution (with
a mean of zero and a standard deviation of one) the function does not require any additional
arguments. For example to find the probability that a randomly selected value will be less than or
equal to 2.5, use the command:

> pnorm(2.5)
[1] 0.9937903

From the output, you can see that the probability is 0.9937903, or approximately 99%.

To find a probability for a non-standard normal distribution, add the mean and sd arguments. For
example, if a random variable is known to be normally distributed with a mean of 5 and a standard
deviation of 2 and you wish to find the probability that a randomly selected member will be no more
than 6, use the command:

> pnorm(6, mean=5, sd=2)
[1] 0.6914625

To find the complementary probability that the value will be greater than 6, set the lower.tail
argument to F.

> pnorm(6, 5, 2, lower.tail=F)
[1] 0.3085375

You can find probabilities for other distributions by substituting norm for the relevant distribution
suffix from Table 7.1. You will also need to change the mean and sd arguments for the parameters
relevant to the distribution. Use the help function to check the parameters for the function that
you are using.
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Example 7.4. Finding probabilities for the normal distribution

Suppose the height of men in the UK is known to be normally distributed with a mean of 177 cm
and a standard deviation of 10 cm. If you were to select a man from the UK population at random,
what is the probability that he would be more than 200 cm tall?

To answer the question, use the command:

> pnorm(200, 177, 10, lower.tail=F)
[1] 0.01072411

From the output you can see that the probability is approximately 0.011, or 1.1%.

What is the probability that he would be less than 150 cm tall?

> pnorm(150, 177, 10)
[1] 0.003466974

The probability is 0.0035, or 0.35%.

Example 7.5. Finding probabilities for the binomial distribution

If you were to role a fair six-sided die 100 times, what is the probability of rolling a six no more
than 10 times?

The number of sixes in 100 dice roles follows a binomial distribution, so you can answer the question
with the pbinom function as shown.

> pbinom(10, 100, 1/6)
[1] 0.04269568

From the output you can see that the probability of rolling no more than 10 sixes is 0.043 (4.3%).

What is the probability of rolling a six more than 20 times?

> pbinom(20, 100, 1/6, lower.tail=F)
[1] 0.1518878

The probability of rolling more than 20 sixes is approximately 0.15, or 15%.

Example 7.6. Finding probabilities for the exponential distribution

Malfunctions in a particular type of electronic device are known to follow an exponential distribution
with a mean time of 24 months until the device malfunctions. What is the probability that a randomly
selected device will malfunction within the first six months?

You can answer the question using the pexp function, as shown below:

> pexp(6, 1/24)
[1] 0.2211992
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The probability of malfunction within six months is 0.22 (22%).

What is the probability that a randomly selected device will last more than 5 years (60 months)
without malfunction?

> pexp(60, 1/24, lower.tail=F)
[1] 0.082085

The probability that it will last more than 5 years is approximately 0.08, or 8%.

7.3 Finding quantiles

To find the value that a given percentage of a population falls above or below, or the range of
values within which a given percentage of a population lies, use the inverse cdf for the appropriate
distribution. The name of the function is formed by combining the prefix q with the relevant suffix
from Table 7.1 on page 7.1.

To find quantiles for the normal distribution, use the qnorm function. For a standard normal
distribution, use the function without any additional arguments. For example to find the value
below which 95% of values fall, use the command:

> qnorm(0.95)
[1] 1.644854

For non-standard normal distributions, use the mean and sd arguments to specify the parameters
for the distribution. For example, suppose that a variable is known to be normally distributed with
a mean of 5 and standard deviation of 2. To find the value below which 95% of the population
falls, use the command:

> qnorm(0.95, mean=5, sd=2)
[1] 8.289707

To find the value above which 95% of the population falls, set the lower.tail argument to F
as shown.

> qnorm(0.95, 5, 2, lower.tail=F)
[1] 1.710293

For other standard probability distributions, you must replace the mean and sd arguments with
other parameters relevant to the distribution that you are using. Use the help function to see what
these are.

Example 7.7. Finding quantiles for the normal distribution



7.4. Generating random numbers 89

A manufacturer of a special type of one-size glove wants to design the glove to fit at least 99%
of the population. Hand span is known to be normally distributed with a mean of 195 mm and a
standard deviation of 17 mm. What range of hand spans must the glove accomodate?

To find the value below which 0.5% of the population falls, use the command:

> qnorm(0.005, 195, 17)
[1] 151.2109

Similarly to find the value above which 0.5% of the population falls, use the command:

> qnorm(0.005, 195, 17, lower.tail=F)
[1] 238.7891

The remaining 99% of the population falls between these two values. So to accomodate 99% of
the population, the gloves must be designed to fit hands with a span between 151 and 239 mm.

Example 7.8. Finding quantiles for the exponential distribution

Malfunctions in a particular type of electronic device are known to follow an exponential distribution
with a mean time of 24 months until the device malfunctions. After how many months will 40% of
the devices already have malfunctioned?

To find the length of time within which 40% of devices will have malfunctioned, use the command:

> qexp(0.4, 1/24)
[1] 12.25981

So 40% of devices will malfunction within 12.3 months.

Example 7.9. Finding quantiles for the Poisson distribution

The number of lobster ordered in a restaurant on a given day is known to follow a Poisson distribution
with a mean of 20. If the manager wants to be able to satisfy all requests for lobster on at least
80% of days, how many lobster should they order each day?

To find the number of lobster requests that will not be exceeded on 80% of days, use the command:

> qpois(0.8, 20)
[1] 24

By ordering 24 lobster per day, the restaurant will be able to satisfy all requests for lobster on at
least 80% of days.

7.4 Generating random numbers

R has a set of functions that allow you to generate random numbers from any of the standard
probability distributions. This is useful for simulating data.
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The functions names are formed from the prefix r and the relevant suffix from Table 7.1 on page
7.1. The first argument required by the functions is the quantity of random numbers to generate.
This is followed by any parameters relevant to the distribution, which you can check using the help
function.

For example, the command below generates 100 random numbers from a standard normal distribu-
tion and saves them in an object named vector1.

> vector1<-rnorm(100)

To generate random numbers from a non-standard normal distribution, add the mean and sd
arguments. For example, to generate 100 random numbers from a normal distribution with a mean
of 27.3 and a standard deviation of 4.1, use the command:

> vector2<-rnorm(100, 27.3, 4.1)

To generate a simple random sample from a range of numbers, you can use the sample func-
tion. For example, to select 20 random numbers between 1 and 100 without replacement, use the
command:

> sample(1:100, 20)

[1] 58 76 87 14 95 68 98 2 47 96 12 49 44 21 23 34 84 6 29 5

To sample with replacement, set the replace argument to T.

> sample(1:100, 20, replace=T)

Example 7.10. Generating random numbers from a normal distribution.

Hand span in a particular population is known to be normally distributed with a mean of 195 mm
and a standard deviation of 17 mm. To simulate the hand spans of three randomly selected people,
use the command:

> rnorm(3, 195, 17)

[1] 186.376 172.164 195.504

Example 7.11. Generating random numbers from a binomial distribution

To simulate the number of sixes thrown in 10 rolls of a fair die, use the command:

> rbinom(1, 10, 1/6)

[1] 3
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Example 7.12. Generating random numbers from a Poisson distribution

The number of lobsters ordered on any given day in a restaurant follows a Poisson distribution
with a mean of 20. To simulate the number of lobsters ordered over a seven day period, use the
command:

> rpois(7, 20)

[1] 19 10 13 23 21 13 25

Example 7.13. Generating random numbers from an exponential distribution

Malfunctions in a particular type of electronic device are known to follow an exponential distribution
with a mean time of 24 months until the device malfunctions.

To simulate the time to malfunction for ten randomly selected devices, use the command:

> rexp(10, 1/24)

[1] 7.7949626 1.4280596 63.6650676 33.3343910 0.5911718 46.2797640
[7] 16.4355239 38.1404491 12.2637182 10.9453535

Task Command

Find the value of the density function at value x dnorm(x, mean, sd)

Obtain P(X ≤ x) pnorm(x, mean, sd)

Obtain x where P(X ≤ x) = p qnorm(p, mean, sd)

Generate n random numbers from a normal distribution rnorm(n, mean, sd)

Chapter Summary: Probability distributions
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Chapter 8

Creating plots

One of the strong points of R is its ability to easily produce excellent quality, fully customisable
plots and statistical graphics. It is possible to produce just about any type of statistical plot with
R. This chapter explains how to create the most popular types.

This chapter concentrates on creating plots using the default settings. In Chapter 9 you will learn
how to make your plots more presentable by changing titles, labels, colours and other aspects of
the plot’s appearance.

This chapter uses the trees and iris datasets (which are included with R), the people2 dataset
(available from the website) and the sexeyetable table object (created in Section 6.1).

8.1 Simple plots

To create a basic plot of a continuous variable against the observation number, use the plot
function. For example to plot the Height variable from the trees dataset, use the command:

> plot(trees$Height)

When you create a plot, it is displayed in a new window called the graphics device (or for Mac users,
the Quartz device). Figure 8.1a shows how the plot looks.

The plot function does not just create basic one-dimensional plots. The type of plot created
depends on the type and number of variables you give as input. You will see it used in different
parts of this book to create other types of plots, including bar charts and scatter plots.

By default, R uses symbols to plot the data values. To use lines instead of symbols, set the type
argument to "l" as shown below.

> plot(trees$Height, type="l")

Other possible values for the type argument include: "b" for both lines and symbols; "h" for
vertical lines; and "s" for steps.34 Figures 8.1b-e shows how the plot looks when these values
are used. Depending on the nature of your data, some of these options will be more suitable than
others.
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(a) Default style

(b) type="l" (c) type="b"

(d) type="h" (e) type="s"

Figure 8.1: Simple plots created with the plot function
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8.2 Histograms

A histogram is a plot for a continuous variable that allows you to assess its probability distri-
bution.

Histogram

You can create a histogram with the hist function, as shown below for the Height variable.
Figure 8.2a shows the result.

> hist(trees$Height)

(a) Basic histogram (b) Histogram with curve

Figure 8.2: Histograms of the Height variable from the trees dataset

R automatically selects a suitable number of bars for the histogram. If you prefer, you can specify
the number of bars with the breaks argument.

> hist(dataset$variable, breaks=15)

By default, R creates a histogram of frequencies. To create a histogram of densities (so that the
total area of the histogram is equal to one), set the freq argument to F.

> hist(dataset$variable, freq=F)

You can use the curve function to fit a normal distribution curve to the data. This allows you to
see how well the data fits the normal distribution. Use the curve function directly after the hist
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function, while the histogram is still displayed in the graphics device. Adding a density curve is only
appropriate for a histogram of densities, so remember to set the freq argument to F.

> hist(trees$Height, freq=F)
> curve(dnorm(x, mean(trees$Height), sd(trees$Height)), add=T)

The result is shown in Figure 8.2b.

If the variable has any missing data values, remember to set the na.rm argument to T for the
mean and sd functions as shown.

> hist(dataset$variable, freq=F)
> curve(dnorm(x, mean(dataset$variable, na.rm=T),

sd(dataset$variable, na.rm=T)), add=T)

The curve function is discussed in more detail in Sections 8.10 and 9.7.2, and the dnorm function
is covered is Section 7.1.

8.3 Normal probability plots

A normal probability plot is a plot for a continuous variable that helps to determine whether a
sample is drawn from a normal distribution. If the data is drawn from a normal distribution,
the points will fall approximately in a straight line. If the data points deviate from a straight
line in any systematic way, it suggests that the data is not drawn from a normal distribution.2

Normal probability plot

You can create a normal probability plot using the qqnorm function, as shown for the Height
variable.

> qqnorm(trees$Height)

You can also add a reference line to the plot, which makes it easier to determine whether the data
points are falling into a straight line. To add a reference line, use the qqline function directly
after the qqnorm function as shown.

> qqnorm(trees$Height)
> qqline(trees$Height)

The result is shown in Figure 8.3.

There is also a function called qqplot which allows you to create quantile plots for comparing data
with other standard probability distributions besides the normal distribution. Enter help(qqplot)
for more details.
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Figure 8.3: Normal probability plot of the Height variable

8.4 Stem-and-leaf plots

The stem-and-leaf plot (or stemplot) is another popular plot for a continuous variable. It is
similar to a histogram, but all of the data values can be read from the plot.

Stem-and-leaf plot

You can create a stem-and-leaf plot with the stem function, as shown below for the Volume
variable.

> stem(trees$Volume)

Unlike other plots, the output is displayed in the command window rather than the graphics device.

The decimal point is 1 digit(s) to the right of the |

1 | 00066899
2 | 00111234567
3 | 24568
4 | 3
5 | 12568
6 |
7 | 7
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8.5 Bar charts

A bar chart is a plot for summarising categorical data. A simple bar chart summarises one
categorical variable by displaying the number of observations in each category. Grouped and
stacked bar charts summarise two categorical variables by displaying the number of observations
for each combination of categories.

Bar chart

You can create bar charts with the plot and barplot functions. If you have raw data such as
the Eye.Colour variable in the people2 dataset, use the plot function as shown below. The
result is given in Figure 8.4a.

> plot(people2$Eye.Colour)

When creating a bar chart from raw data, the variable must have the factor class. Section 3.3
explains how to check the class of a variable and change it if necessary.

To create a bar chart from a previously saved one-dimensional table object (see Section 6.1), use
the barplot function.

> barplot(tableobject)

(a) Default style (b) with horiz=T

Figure 8.4: Bar charts of the Eye.colour variable from the people2 dataset
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For a horizontal bar chart like the one shown in Figure 8.4b, set the horiz argument to T. This
works with both the plot and barplot functions.

> plot(people2$Eye.Colour, horiz=T)

The barplot function can also create a bar chart for two categorical variables, known as a multiple
bar chart. There are two styles of multiple of bar chart, as shown in Figure 8.5.

(a) Stacked bar chart (b) Grouped bar chart

Figure 8.5: Two styles of multiple bar chart of Eye.Colour by Sex

The first is the stacked style, which you can create from a two-dimensional table object as shown.

> barplot(sexeyetable, legend.text=T)

The second style is a grouped bar chart, which displays the categories side-by-side. Create this style
by setting the beside argument to T.

> barplot(sexeyetable, beside=T, legend.text=T)

To create multiple bar charts from raw data, first create a two-dimensional table object as explained
in Section 6.1. Alternatively you can nest the table function inside the barplot function as
shown below.

> barplot(table(people2$Eye.Colour, people2$Sex), legend.text=T)
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8.6 Pie charts

The pie chart is a plot for a single categorical variable and is an alternative to the bar chart.
It displays the number of observations in each category as a portion of the total number of
observations.

Pie chart

You can create a pie chart with the pie function. If you have previously created a one-dimensional
table object (see Section 6.1), you can use the function directly.

> pie(tableobject)

To create a pie chart from raw data, nest the table function inside the pie function as shown
below. The result is given in Figure 8.6.

> pie(table(people2$Eye.Colour))

Figure 8.6: Pie chart of the Eye.Colour variable

If your variable has missing data and you want this to appear as an additional section in the pie
chart, set the useNA argument to "ifany".

> pie(table(dataset$variable, useNA="ifany"))
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8.7 Scatter plots

A scatter plot is a plot for two continuous variables, which allows you to examine the relationship
between them.

Scatter plot

You can create a scatter plot with the plot function, by giving two numeric variables as input.
The first variable is displayed on the vertical axis and the second variable on the horizontal axis.
For example, to plot Volume against Girth for the trees dataset, use the command:

> plot(Volume~Girth, trees)

The output is shown in Figure 8.7.

Figure 8.7: Scatter plot of Volume against Girth, for the trees dataset

To add a line of best fit (linear regression line), use the abline function directly after the plot
function as shown.

> plot(Volume~Girth, trees)
> abline(coef(lm(Volume~Girth, trees)))

You will learn more about the abline function in Section 9.7.1, and the lm and coef functions
is Chapter 11.
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If it is meaningful for your data, you can join the data points with lines by setting the type argument
to "l". To create a plot with both symbols and lines, set it to "b". The effect is shown in Figure
8.8.

> plot(Volume~Girth, trees, type="l")

(a) type="l" (b) type="b"

Figure 8.8: Scatter plots with (a) lines and (b) both lines and symbols

8.8 Scatterplot matrices

A scatterplot matrix is a collection of scatter plots showing the relationship between each pair
in a set of variables. It allows you to examine the correlation structure of a dataset.

Scatterplot matrix

To create a scatterplot matrix of the variables in a dataset, use the pairs function. For example,
to create a scatterplot matrix for the iris dataset use the command:

> pairs(iris)

The output is shown in Figure 8.9.

You can also select a subset of variables to include in the matrix. For example to include just the
Sepal.Length, Sepal.Width and Petal.Length variables, use the command:
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Figure 8.9: Scatterplot matrix for the iris dataset
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> pairs(~Sepal.Length+Sepal.Width+Petal.Length, iris)

Alternatively you can use bracket notation or the subset function to select or exclude variables
from a dataset, as explained in Sections 1.7 and 3.11 respectively.

8.9 Box plots

A box plot (or box-and-whisker plot) presents summary statistics for a continuous variable in a
graphical form. Usually a categorical variable is used to group the observations, so that the plot
summarises the distribution for each category. This helps you to understand the relationship
between a categorical and a continuous variable.

Box plot

You can create a box plot with the boxplot function. For example, the following command creates
a box plot of Sepal.Length grouped by Species for the iris dataset. Figure 8.10a shows
the result.

> boxplot(Sepal.Length~Species, iris)

(a) Default style (b) with horizontal=T

Figure 8.10: Box plot of Sepal.Length grouped by Species, for the iris dataset

To create a horizontal box plot as shown in Figure 8.10b, set the horizontal argument to T.
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> boxplot(Sepal.Length~Species, iris, horizontal=T)

You can also create a single box plot for a continuous variable (without any grouping), as shown
below.

> boxplot(iris$Sepal.Length)

By default, the whiskers extend to a maximum of 1.5 times the interquartile range of the data, with
any values beyond this is shown as outliers. If you want the whiskers to extend to the minimum
and maximum values, set the range argument to 0.

> boxplot(Sepal.Length~Species, iris, range=0)

8.10 Plotting a function

You can plot a mathematical function such as y = t3 with the curve function. Express the
mathematical function in terms of x, as shown below. Figure 8.11a shows the result.

> curve(x^3)

To display the most interesting part of the curve, you may need to adjust the axes as explained in
Section 9.2.

(a) y = x3 (b) Density function for the normal distribution

Figure 8.11: Plots created with the curve function
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To plot a curve of the probability density function (pdf) for a standard probability distribution,
use the relevant density function from Table 7.1 on page 84. For example, to plot the pdf of the
standard normal distribution, use the command:

> curve(dnorm(x))

The results are shown in Figure 8.11b.

8.11 Exporting and saving plots

Before exporting or saving a plot, resize the graphics device window so that the plot has the required
dimensions.

The simplest way to export a plot is to right-click on the plot and select ’Copy as bitmap’. The
image is copied to the clipboard, so that you can paste it into a Microsoft Word® or Powerpoint®

file or a graphics package.

Alternatively, R allows you to save the image to a variety of file types including png, jpeg, bmp and
pdf. With the graphics device as the active window, select ’Save as’ from the ’File’ menu. You will
be given a number of options for saving the image.

Mac users can copy the image to the clipboard by selecting ’Edit’ then ’Copy’, or save the image
as a pdf file by selecting ’File’ then ’Save’.

Linux users can save the current plot by entering the command:

> savePlot("/home/Username/folder/filename.png", type="png")

Other possible file types are bmp, jpeg and tiff.
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Plot type Command

Basic plot plot(dataset$variable)

Line plot plot(dataset$variable, type="l")

Histogram hist(dataset$variable)

Normal probability plot qqnorm(dataset$variable)

Stem-and-leaf plot stem(dataset$variable)

Bar chart plot(dataset$factor1)

barplot(tableobject1D)

Stacked bar chart barplot(tableobject2D)

Grouped bar chart barplot(tableobject2D, beside=T)

Pie chart pie(tableobject1D)

pie(table(dataset$factor1))

Scatter plot plot(yvar~xvar, dataset)

Scatterplot matrix pairs(dataset)

Single box plot boxplot(dataset$variable)

Grouped box plot boxplot(variable~factor1, dataset)

Function plot curve(f(x))

Chapter summary: Creating plots
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Chapter 9

Customising your plots

The previous chapter explained how to create the most popular types of plots. This chapter explains
how to customise the appearance of your plots to create a more polished look. This includes adding
titles and labels, adjusting the font style of text, changing the colour of the various elements of the
plot, changing the style of lines and symbols, and adding additional items.

Most changes to the appearance of a plot are made by giving additional arguments to the plotting
function. In this chapter, the plot function is used to illustrate. However most of the arguments
can also be used with other plotting functions such as hist and boxplot.

9.1 Titles and labels

Whenever you create a plot, R add default axis labels and sometimes a default title too. You can
overwrite these with your own titles and axis labels.

You can add a title to your plot with the main argument as shown.

> plot(dataset$variable, main="This is the title")

To add a subtitle to be displayed underneath the plot, use the sub argument.

> plot(dataset$variable, sub="This is the subtitle")

If you have a very long title or subtitle that should be displayed over two of more lines, use \n to
tell R where the line break should be.

> plot(dataset$variable, main="This is the first line of the title\n
and this is the second line")

To change the x and y axis labels, use the xlab and ylab arguments.

> plot(dataset$variable, xlab="The x axis label", ylab="The y axis
label")

You can also add additional arguments to control the appearance of the text in the title, subtitle,
axis labels and axis units. Table 9.1 gives a list of these.
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Aspect Argument Possible values

Font family All text family="serif" sans, serif, mono

Font type Title font.main=2
1 (normal); 2 (bold); 3 (italic);
4 (bold & italic).

Subtitle font.sub=2
Axis labels font.lab=2
Axis units font.axis=2

Font size Title cex.main=2

Relative to default, e.g. 2 is twice normal sizeSubtitle cex.sub=2
Axis labels cex.lab=2
Axis units cex.axis=2

Font colour Title col.main="red"
See Section 9.3 for details of how to specify
colours

Subtitle col.sub="red"
Axis labels col.lab="red"
Axis units col.axis="red"

Table 9.1: Additional arguments for customising the font of titles and labels.

For example, the command below add a title, sets the font family to serif and the title font to
be grey, italic and three times the usual size.

> plot(trees$Height, main="This is the title", family="serif",
col.main="grey80", cex.main=3, font.main=3)

For plots that include a categorical variable such as the bar chart, pie chart and box plot, you can
also customise the category labels. If you plan to create several plots then it is easier to change
the level names for the factor variables in your dataset, as explained in Section 3.6. This means
you won’t have to modify the labels every time you plot the variable. However it is also possible to
modify the labels at the time of plotting.

For pie charts, use the labels argument.

> pie(table(dataset$variable), labels=c("Label1", "Label2",
"Label3"))

For bar charts, use names.arg:

> plot(dataset$variable, names.arg=c("Label1", "Label2", "Label3"))
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For box plots, use names:

> boxplot(variable~factor, dataset, names=c("Label1", "Label2",
"Label3"))

9.2 Axes

When plotting continuous variables, R automatically select sensible axis limits for your data. How-
ever if you want to change them, you can do so with the xlim and ylim arguments. For example,
to change the axis limits to 0-30 for the horizontal axis and 0-100 for the vertical axis, use the
command:

> plot(Volume~Girth, trees, xlim=c(0, 30), ylim=c(0, 100))

Figure 9.1 shows the results.

Figure 9.1: Plot with adjusted axis ranges

To rotate the axis numbers for the vertical axis so that they are in upright rather than in line with
the vertical axis, set the las argument to 1.

> plot(dataset$variable, las=1)
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9.3 Colours

R allows you to change the colour of every component of a plot. The most important argument is
the col argument, which allows you to change the plotting colour. This is the colour of the lines
or symbols that are used to represent the data values. For histograms, bar charts, pie charts and
box plots it is the colour of the area enclosed by the shapes.

There are three ways to specify colours. The first is to give the name of the colour:

> plot(dataset$variable, col="red")

The colours function displays a list of recognised colour names (the American-English spelling
colors also works).

> colours()

The second way to specify colours is with a number between 1 and 8, which correspond to the set
of basic colours shown in Table 9.2.

Value Name

1 black
2 red
3 green3
4 blue
5 cyan
6 magneta
7 yellow
8 gray

Table 9.2: Basic plotting colours. Note that these may vary for some platforms. Enter
palette() to view the colours for your platform.

For example to specify red as the plotting colour, use the command:

> plot(dataset$variable, col=2)

Finally, if you require more precise control over the appearance of the plot then you can specify the
colour using the hexadecimal RGB format. The command below changes the plotting colour to red
using the hexadecimal colour specification.

> plot(dataset$variable, col="#FF0000")

As well as specifying a single plotting colour, you can give a list of colours for R to use. This is
particularly useful for pie charts and bar charts, where each category is given a different colour from
the list.
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> plot(dataset$variable, col=c("red", "blue", "green"))

The numeric notation is useful for this purpose.

> plot(dataset$variable, col=1:8)

There are also functions such as rainbow, which help to easily create a visually appealing set of
colours. The command below creates five colours, evenly spaced along the spectrum.

> plot(dataset$variable, col=rainbow(5))

Other colour scheme functions include heat.colors, terrain.colors, topo.colors and
cm.colors.

You can change the colour of the other elements of the plot in a similar way, using the arguments
given in Table 9.3.

Component Argument

Plotting symbol, line or area col
Foreground (axis, tick marks and other elements) fg
Background bg*
Title text col.main
Subtitle text col.sub
Axis label text col.lab
Axis numbers col.axis

Table 9.3: Arguments for changing the colour of plot components.38 *The background
colour must be changed with the par() function.

Note that the background colour cannot be change from within the plotting function, but must be
changed with the par function as shown below.

> par(bg="red")
> plot(dataset$variable)

Changes made with the par function apply to all plots for the remainder of the session, or until
overwritten. See Section 9.11 for more details on using the par function.

9.4 Plotting symbols

This section applies only to plots where symbols are used to represent the data values, such as
scatter plots.
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You can change the plotting symbol with the pch argument, as shown below. The numbers 1 to
25 correspond to the symbols given in Table 9.4.

> plot(dataset$variable, pch=5)

Number Symbol

1
2
3
4
5
6
7
8
9

Number Symbol

10
11
12
13
14
15
16
17
18

Number Symbol

19
20
21
22
23
24
25

Table 9.4: Plotting symbols for use with the pch argument

Symbol numbers 21 to 25 allow you to specify different colours for the symbol border and fill. The
border colour is specified with the col argument and the fill colour with the bg argument.29

> plot(dataset$variable, pch=21, col="red", bg="blue")

Alternatively, you can select any single keyboard character to use as the plotting symbol by placing
it between quotation marks, as shown below for the dollar symbol.

> plot(dataset$variable, pch="$")

You can adjust the size of the plotting symbol with the cex argument. The size is specified relative
to the normal size. For example to make the plotting symbols 5 times their normal size, use the
command:

> plot(dataset$variable, cex=5)

9.5 Plotting lines

This section applies only to plots with lines, such as scatter plots and basic plots created with the
plot function and where the type argument is set to "l" or "b". It also applies to functions that
add additional lines to existing plots, such as abline, curve, segments and lines (covered
in Sections 9.7 and 9.8).

You can change the line type with the lty argument. The numbers 1 to 6 correspond to the line
types given in Table 9.5.
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Number Name Line Style

1 solid
2 dashed
3 dotted
4 dotdash
5 longdash
6 twodash

Table 9.5: Plotting line types

For example, you can change the line type to dashed as shown.

> plot(dataset$variable, type="l", lty=2)

You can also select a line type by name.

> plot(dataset$variable, type="l", lty="dashed")

You can adjust the thickness of the line with the lwd argument. The line thickness is specified
relative to the standard line thickness. For example to make the line three times its usual thickness,
use the command:

> plot(dataset$variable, type="l", lwd=3)

9.6 Shaded areas

This section applies only to plots with shaded areas such as bar charts, pie charts and histograms.

The density of a shaded area is the number of lines per inch used to shade. You can change the
density of the shaded areas with the density argument and the angle of the shading with the
angle argument.

> barplot(tableobject, density=20, angle=30)

As a guideline, density values between 5 and 80 give discernible variation, while a value of 150 is
indistinguishable from solid colour.

You can also give a list of densities and R will shade each section of a pie or bar chart with a
different density from the list.

> pie(table(people2$Eye.Colour), density=c(10, 20, 40))

Figure 9.2 shows the result.
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Figure 9.2: Pie chart with a different density of shading for each category

9.7 Adding additional items to plots

This section introduces some functions that add extra items to plots. You can use them with any
type of plot. First create the plot using plot or another plotting function. While the plot is still
displayed in the graphics device, enter the relevant command from this section. The item is added
to the current plot.

9.7.1 Adding additional straight lines

You can add straight lines to your plot with the abline function.

To add a vertical line at x = 5 use the command:

> abline(v=5)

To add a horizontal line at y = 2 use:

> abline(h=2)

To add a diagonal line with intercept 2 and slope 3 (i.e. the line y = 2 + 3x) use the command:

> abline(a=2, b=3)

To draw a line segment (a line that extends from one point to another), use the segments function.
For example, the command below draws a straight line from coordinate (0,1) to coordinate (3,4).
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> segments(0,1,3,4)

You can change the line colour, type, and thickness with the col, lty and lwd arguments as
explained in Sections 9.3 and 9.5.

9.7.2 Adding a mathematical function curve

To add a mathematical function curve to your plot, use the curve function (introduced in Section
8.10). By default the curve function creates a new plot. To superimpose the curve over the
current plot, set the add argument to T as shown.

> curve(x^2, add=T)

9.7.3 Adding labels and text

You can add text to your plot with the text function. For example, to add the text ’Text String ’
centred at coordinates (3,4), use the command:

> text(3, 4, "Text String")

You can adjust the appearance of the text with family, font, cex and col arguments. For
example to add a piece of red, italic text which is twice the default size, use the command:

> text(3, 4, "Text String", col="red", font=3, cex=2)

The text function is useful if you want to add labels to all of the points in a scatter plot using text
taken from a third variable or from the row names of your dataset. For example, the commands
below create a scatter plot of per capita GDP against urban population, where each observation is
labelled with the country name (using the CIAdata dataset shown on page 50).

> plot(pcGDP~urban, CIAdata, xlim=c(50, 100), ylim=c(0,40000))
> text(pcGDP~urban, CIAdata, CIAdata$country, pos=1)

Figure 9.3 shows the results.

The pos argument tells R where to place the labels in relation to the coordinates: 1 is below; 2
is to the left, 3 is above; 4 is to the right. You can also use the offset argument to adjust the
distance between the coordinate and the label.
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Figure 9.3: Results of using the text function to add labels

9.7.4 Adding a grid

To add a grid to a plot (as shown in Figure 9.4a) use the grid function.

> grid()

By default, the grid lines are aligned with the axis tick marks. Alternatively, you can specify how
many grid lines to display on each axis.

> grid(3, 3)

To add horizontal grid lines only (as shown in Figure 9.4b), use the command:

> grid(nx=NA, ny=NULL)

For vertical grid lines only, use:

> grid(ny=NA)

By default R uses grey dotted lines for the grid, but you can adjust the line style with the col,
lty, and lwd arguments as explained in Sections 9.3 and 9.5.
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(a) Grid lines (b) Horizontal grid lines

Figure 9.4: Plots with grid lines

9.7.5 Adding arrows

You can add an arrow to the current plot with the arrows function. For example, to draw an
arrow from the point (0,1) to the point (4,5) use the command:

> arrows(0,1,4,5)

For a double ended arrow, set the code argument to 3.

> arrows(0,1,4,5, code=3)

You can adjust the line style using the col, lty and lwd , as explained in Sections 9.3 and 9.5.
You can specify the length of the arrow head (in inches) with the length argument, and the angle
between the arrow head and arrow body (in degrees) with the angle argument.

> arrows(0,1,4,5, angle=20, length=0.1)

9.8 Overlaying plots

R has two functions called points and lines that allow you to superimpose one set of data
values over another.
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The points function is very similar to the plot function. However instead of creating a new plot,
it adds the data points to whichever plot is currently displayed in the graphics device. The lines
function is very similar to the points function, except that it uses lines rather than symbols to
plot the data (i.e. the default value for the type argument is "l").

These functions are useful if you want to plot two or more variables on the same axis (as demon-
strated in Example 9.1) or use different plotting symbols to represent different categories (as shown
in Example 9.2).

Example 9.1. Overlay plot using fiveyearreport data

Consider the fiveyearreport dataset shown in Figure 9.5, which gives the UK sales of three
supermarket chains over a five year period. Suppose you want to display the sales data for Tesco,
Sainsburys and Morrisons in the same plot.

Figure 9.5: fiveyearreport dataset. See Appendix B for more details.

To create this plot, first plot the data for Tesco in the usual way, making sure to set the axis ranges
so that they are wide enough to also accommodate the data for Sainsburys and Morrisons.

> plot(Tesco~Year, fiveyearreport, type="b", ylab="UK Sales (£M)",
ylim=c(0, 50000))

Once the plot is displayed in the graphics device, you can add the data for Sainsburys and Morrisons
using the lines function, which superimposes the data over the current plot. Use the pch and
lty arguments to change the symbol and line type, so that the data for the different chains can be
distinguished. Alternatively you could use the col argument to give each chain a different colour.

> lines(Sainsburys~Year, fiveyearreport, type="b", pch=2, lty=2)
> lines(Morrisons~Year, fiveyearreport, type="b", pch=3, lty=3)

Figure 9.6 shows the results. The plot will require a legend to identify the chains, which you can
add with the legend function as explained in Section 9.9.

Example 9.2. Overlay plot using iris data

Suppose you want to create a scatter plot of sepal length against sepal width for the iris data,
using a different plotting symbol to represent each iris species. To create this plot, you will need
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Figure 9.6: Overlay plot for fiveyearreport dataset

to plot the data for each species separately using the points function, overlaying them onto the
same plot.

First plot the original (complete) data with the plot function, adding any labels or titles that you
require. Set the type argument to "n" to prevent the data values from being added to the plot.
This creates an empty axis which is the right size to accommodate all of the data for all three
species.

> plot(Sepal.Length~Sepal.Width, iris, type="n")

Next, plot the data for each species separately with the points function. Use the subset
argument to select each species in turn. Use the pch argument to select a different plotting symbol
for each species. Alternatively you could use the col argument to give each species a different
coloured symbol.

> points(Sepal.Length~Sepal.Width, iris, subset=Species=="setosa",
pch=10)

> points(Sepal.Length~Sepal.Width, iris,
subset=Species=="versicolor", pch=16)

> points(Sepal.Length~Sepal.Width, iris,
subset=Species=="virginica", pch=1)

The result is shown in Figure 9.7. The legend is added with the legend function, as explained in
Section 9.9.
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Figure 9.7: Overlay plot for the iris data

9.9 Adding a legend

You can add a legend to your plot with the legend function. The function adds a legend to
whichever plot is currently displayed in the graphics device.

The following command creates the legend shown in Figure 9.7.

> legend(3.7, 7, legend=c("Setosa", "Versicolor", "Virginica"),
pch=c(10, 16, 1))

The first two arguments (3.7 and 7) are the x and y coordinates for the top left-hand corner of
the legend. Besides using coordinates, there are two other ways of specifying the position of the
legend. The first is by using one of the location names: "top", "bottom", "left", "right",
"center", "topright", "topleft", "bottomright" or "bottomleft".

> legend("topright", legend=c("Setosa", "Versicolor", "Virginica"),
pch=c(10, 16, 1))

The second is by using locator(1). This allows you to manually select the position for the top
left-hand corner of the legend with your mouse.

> legend(locator(1), legend=c("Setosa", "Versicolor", "Virginica"),
pch=c(10, 16, 1))
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The legend argument gives the labels to be displayed on the legend. The pch argument gives
the plotting symbols that correspond to each of the labels.

You can substitute the pch argument with the lty, lwd, col, cex, fill, density and angle
arguments, according to what is relevant for your plot. You may need to use two or more of them.
The examples below demonstrate how to create some different types of legend. The results are
shown in Figure 9.8.

Example 9.3. Legend showing shaded areas of different densities

To create a legend for shaded areas of different densities as shown in Figure 9.8a, use the command:

> legend(locator(1), legend=c("Label1", "Label2", "Label3"),
density=c(10,20,40))

Example 9.4. Legend showing different line and symbol types

To create a legend for different line and symbol types as shown in Figure 9.8b, use the command:

> legend(locator(1), legend=c("Label1", "Label2", "Label3"),
lty=1:3, pch=1:3)

Example 9.5. Legend with lines of different colours and types

To create a legend for lines of different types and colours as shown in Figure 9.8c, use the command:

> legend(locator(1), legend=c("Label1", "Label2", "Label3"),
col=c("black", "grey40", "grey70"), lty=1:3)

(a) (b) (c)

Figure 9.8: Different types of legend

To display a legend over more than one column, use the ncol argument to specify the number of
columns.

> legend(x, y, legend=c("Label1", "Label2", "Label3"),
lty=c(1,2,3), ncol=2)

Note that you don’t need to use the legend function to add a legend to a bar chart, as the
barplot function has a built-in legend option (see Section 8.5).
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9.10 Multiple plots in the plotting area

As well as creating images of single plots, R allows you to create an image composed of several
smaller plots arranged in a grid formation.

To set up the graphics device to display multiple plots, use the command:

> par(mfrow=c(R,C))

where R and C are the number of row and columns in the grid. Any plots that you subsequently
create will fill the slots in the top row from left to right, followed by those in the second row and
so on.

For example, to arrange four plots in a two-by-two grid use the command:

> par(mfrow=c(2,2))

Then you can create up to four plots of any type to fill each of the slots, as shown in Figure 9.9.

> hist(iris$Sepal.Length)
> qqnorm(iris$Sepal.Length)
> pie(summary(iris$Species))
> plot(Petal.Length~Sepal.Length, iris)

When you create a fifth plot, a new image is started. The graphics device will continue to display
multiple plots for the remainder of the session, or until you reverse it with the command:

> par(mfrow=c(1,1))

9.11 Changing the default plot settings

So far, this chapter has explained how you can make modifications to a specific plot. However, you
may want to change the settings so that they apply to all plots.

The par function allows you to change the default plotting style. For example, to change the
default plotting symbol to be a triangle and the default title colour to red, use the command:

> par(pch=2, col.main="red")

Any plots that you subsequently create will have red title text and use a triangle as the plotting
symbol (if applicable). These changes are applied for the remainder of the session, or until they are
overwritten.

R allows almost every aspect of the plots to be customised. Enter the command help(par) to
see a full list of settings. Some arguments that you cannot change with the par function include
main, sub, xlab, ylab, xlim and ylim, which apply to individual plots only.
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Figure 9.9: Multiple plots
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Task Argument or command

Add title main="Title Text"

Add subtitle sub="Subtitle text"

Add axis labels xlab="X axis label", ylab="Y axis
label"

Change axis limits xlim=c(xmin, xmax), ylim=c(ymin, ymax)

Change plotting colour col="red"

Change plotting symbol pch=2

Change plotting symbol size cex=2

Change line type lty=2

Change line width lwd=2

Change shading density density=20

Add vertical line to plot abline(v=2)

Add horizontal line to plot abline(h=2)

Add straight line to plot abline(a=intercept, b=slope)

Add line segment to plot segments(x1,y1,x2,y2)

Add curve to plot curve(x^3)

Add text to plot text(x, y, "Text String")

Add grid to plot grid()

Add arrow to plot arrows(x1, y1, x2, y2)

Add points to plot points(dataset$variable)

Add lines to plot lines(dataset$variable)

Add legend to plot legend(x, y, legend=c("label1",
"label2", "label3"), ...)

Display multiple plots par(mfrow=c(rows, columns))

Change default plot settings par(...)

Chapter Summary: Customising your plots
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Chapter 10

Hypothesis tests

A hypothesis test uses a sample to test hypotheses about the population from which the
sample is drawn. This helps you make decisions or draw conclusions about the population. A
hypothesis test has the following components:

Null hypothesis (denoted H0) is a hypothesis about the population from which a sample or
samples are drawn. It is usually a hypothesis about the value of an unknown parameter
such as the population mean or variance, e.g. H0: The population mean is equal to five.
The null hypothesis is adopted unless proven false.15

Alternative hypothesis (denoted H1 or HA) is the hypothesis which will be accepted if there
is enough evidence to reject the null hypothesis. This is generally the inverse of the null
hypothesis, e.g. H1: The population mean is not equal to five.15

Test statistic is a statistic calculated from the sample values, which has a known distribution
under the null hypothesis. It varies depending on the type of test and has no direct
interpretation.

p-value gives the probability of observing the test statistic or something more extreme, as-
suming that the null hypothesis were true. If this is very small then it suggests that the
null hypothesis is not feasible, giving evidence in support of the alternative hypothesis.47

Significance level (denoted α) is the cut-off point at which the null hypothesis is rejected.
The significance level should be determined before beginning the test. Usually a signif-
icance level of 0.05 is used, but 0.01 and 0.1 are also popular choices. If a significance
level of 0.05 is used, then we reject the null hypothesis in favour of the alternative hy-
pothesis only if the p-value is less than 0.05. Otherwise no conclusion is drawn. Choosing
a significance level of 0.05 means that if the null hypothesis were true, there would be a
5% chance of incorrectly rejecting it (i.e. making a type I error).47

Hypothesis tests

This chapter covers the topic of hypothesis testing, beginning with tests for comparing sample
means. The t-test is covered Section 10.1 and the Wilcoxon rank-sum test (the non-parametric
alternative) is covered in Section 10.2.
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The analysis of variance, for comparing the means of three or more samples, is covered in Section
10.3. The Kruskal-Wallis test (the non-parametric alternative) is covered in Section 10.4.

Section 10.5 explains how to perform pairwise comparisons using multiple comparison methods such
as Tukey’s HSD test.

Finally, hypothesis tests for comparing sample variances are discussed in Section 10.6. These include
the F-test and Bartlett’s test.

There are also several hypothesis tests that are covered in other chapters. The hypothesis test for
correlation and the Shapiro-Wilk and Kolmogorov-Smirnov tests for fit to a distribution are covered
in Chapter 5. Tests for tabular data, such as the Chi-square test and Fisher’s test, can be found in
Chapter 6.

This chapter uses the iris, PlantGrowth and sleep datasets (included with R) and the
bottles, brains and grades1 datasets (available from the website). To view more details
about the dataset included with R, enter help(datasetname). For further details about all
other datasets, see Appendix B.

10.1 Student’s t-tests

The Student’s t-test is used to test hypotheses about the mean value of a population or two
populations. A t-test is suitable if the data is believed to be drawn from a normal distribution.
If the samples are large enough (i.e. at least 30 values per sample11), then the t-test can be
used even if the data is not normally distributed. If your data does not satisfy either of these
criteria, then use the Wilcoxon rank-sum test instead (see Section 10.2).
There are three types of t-test:46

One-sample t-test is used to compare the mean value of a sample with a constant value
denoted µ0. It has the null hypothesis that the population mean is equal to µ0, and the
alternative hypothesis that it is not.

Two-sample t-test is used to compare the mean values of two independent samples, to de-
termine whether they are drawn from populations with equal means. It has the null
hypothesis that the two means are equal, and the alternative hypothesis that they are
not equal.

Paired t-test is used to compare the mean values for two samples, where each value in one
sample corresponds to a particular value in the other sample. It has the null hypothesis
that the two means are equal, and the alternative hypothesis that they are not equal.

Student’s t-test
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The t-test can also be performed with a one-sided alternative hypothesis, which is known as
a one-tailed test. For a one-sample t-test, the one-sided alternative hypothesis is either that
the mean is greater than µ0 or that it is less than µ0. For a two-sample or paired t-test, the
one-sided alternative hypothesis is that the mean of the first population is either greater or less
than the mean of the second population.

10.1.1 One-sample t-test

You can perform a one-sample t-test with the t.test function. To compare a sample mean with
a constant value mu0, use the command:

> t.test(dataset$sample1, mu=mu0)

The mu argument gives the value with which you to compare the sample mean. It is optional and
has a default value of zero.

By default, R performs a two-tailed test. To perform a one-tailed test, set the alternative
argument to "greater" or "less", as shown below.

> t.test(dataset$sample1, mu=mu0, alternative="greater")

A 95% confidence interval for the population mean is included with the output. To adjust the size
of the interval, use the conf.level argument.

> t.test(dataset$sample1, mu=mu0, conf.level=0.99)

Example 10.1. One-tailed, one-sample t-test using the bottles data

A bottle filling machine is set to fill bottles with soft drink to a volume of 500 ml. The actual volume
is known to follow a normal distribution. The manufacturer believes the machine is under-filling
bottles. A sample of 20 bottles is taken and the volume of liquid inside is measured. The results
are given in the bottles dataset, which is available from the website.

To calculate the sample mean, use the command:

> mean(bottles$Volume)
[1] 491.5705

Suppose you want to use a one-sample t-test to determine whether the bottles are being consistently
under filled, or whether the low mean volume for the sample could be the result of random variation.
A one-sided test is suitable because the manufacturer is specifically interested in knowing whether
the volume is less than 500 ml. The test has the null hypothesis that the mean filling volume is
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equal to 500 ml, and the alternative hypothesis that the mean filling volume is less than 500 ml. A
significance level of 0.01 is to be used.

To perform the test, use the command:

> t.test(bottles$Volume, mu=500, alternative="less",
conf.level=0.99)

This gives the following output:

One Sample t-test

data: bottles$Volume
t = -1.5205, df = 19, p-value = 0.07243
alternative hypothesis: true mean is less than 500
99 percent confidence interval:

-Inf 505.6495
sample estimates:
mean of x
491.5705

From the output, we can see that the mean bottle volume for the sample is 491.6 ml. The one-sided
99% confidence interval tells us that mean filling volume is likely to be less than 505.6 ml. The
p-value of 0.07243 tells us that if the mean filling volume of the machine were 500 ml, the probability
of selecting a sample with a mean volume less than or equal to this one would be approximately
7%.

Since the p-value is not less than the significance level of 0.01, we cannot reject the null hypothesis
that the mean filling volume is equal to 500 ml. This means that there is no evidence that the
bottles are being under-filled.

10.1.2 Two-sample t-test

You can use the t.test function to perform a two-sample t-test using data in both stacked and
unstacked forms. Your data is in stacked form if all the data values are stored in one variable,
and a second variable gives the name or number of the sample that each observation belongs to.
Your data is in unstacked form if the values for each sample are held in separate variables. If you
are unsure which form your data is in, see Section 4.4 for some examples of data in stacked and
unstacked forms.

To perform a two-sample t-test with data in stacked form, use the command:

> t.test(values~groups, dataset)

where values is the name of the variable containing the data values and groups is the variable
containing the sample names. If the grouping variable has more than two levels then you must
specify which two groups you want to compare, as shown below.
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> t.test(values~groups, dataset, groups %in% c("Group1", "Group2"))

If your data is in unstacked form, use the command:

> t.test(dataset$sample1, dataset$sample2)

By default, R uses separate variance estimates when performing two-sample and paired t-tests. If
you believe the variances for the two groups are equal, you can use the pooled variance estimate.
An F-test or Bartlett’s test (see Section 10.6) can help to determine whether this is the case. To
use the pooled variance estimate, set the var.equal argument to T as shown.

> t.test(values~groups, dataset, var.equal=T)

To perform a one-tailed test, set the alternative argument to "greater" or "less".

> t.test(values~groups, dataset, alternative="greater")

When the alternative argument is set to "greater", the alternative hypothesis for the test
is that the mean for the first group is greater than the mean for the second group. If you are using
stacked data, you may need to use the levels function to check which are the first and second
groups (see Section 3.6). Similarly, setting it to "less" gives an alternative hypothesis that the
mean for the first group is less than the mean for the second group.

A 95% confidence interval for the difference in means is included with the output. You can adjust
the size of this interval with the conf.level argument.

> t.test(values~groups, dataset, conf.level=0.99)

Example 10.2. Two-sample t-test using the iris data

Suppose you wish to use a two-sample t-test to determine whether there is any real difference in
mean sepal width for the Versicolor and Virginica species of iris. You can assume that sepal width is
normally distributed, and that the variance for the two groups is equal. The null hypothesis for the
test is that there is no real difference in mean sepal width for the two species, and the alternative
hypothesis is that there is a difference.

The data is in stacked form, so perform the test with the command:

> t.test(Sepal.Width~Species, iris, Species %in% c("versicolor",
"virginica"), var.equal=T)

The output is shown below.

Two Sample t-test

data: Sepal.Width by Species
t = -3.2058, df = 98, p-value = 0.001819
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
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-0.33028246 -0.07771754
sample estimates:
mean in group versicolor mean in group virginica

2.770 2.974

The 95% confidence interval for the difference is -0.33 to -0.08, meaning that the mean sepal width
for the Versicolor species is estimated to be between 0.08 and 0.33 cm less than for the Virginica
species.

The p-value of 0.001819 is less than the significance level of 0.05, so we can reject the null hypothesis
that the mean sepal width is the same for the Versicolor and Virginica species in favour of the
alternative hypothesis that the mean sepal width is different for the two species.

This example is continued in Example 10.9 on page 142, where an F-test is used to check the
assumption of equal variance.

10.1.3 Paired t-test

You can perform a paired t-test by setting the paired argument to T. If your data is in stacked
form, use the command:

> t.test(values~groups, dataset, paired=T)

Your data must have the same numbers of observations in each group, so that there is a one-to-one
correspondence between the samples. R matches the first value from the first sample with the first
value from the second sample.

For data in unstacked form, use the command:

> t.test(dataset$sample1, dataset$sample2, paired=T)

As for the two-sample test, you can adjust the test using the alternative, conf.level and
var.equal arguments. So to perform a test with the alternative hypothesis that the mean for the
first group is less than the mean for the second group, and which uses a pooled variance estimate,
use the command:

> t.test(values~groups, dataset, paired=T, alternative="less",
var.equal=T)

Example 10.3. Paired t-test using the brains data

Consider the brains dataset shown in Figure 10.1, which gives brain volumes (in cubic centimetres)
of the first and second-born twins for ten sets of monozygotic twins.

Suppose that you wish to use a t-test to determine whether brain volume is related to birth order.
Brain volume is assumed to follow a normal distribution. The data is naturally paired because the
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Figure 10.1: The brains dataset, giving brain volume data from the article Brain Size,
Head Size, and IQ in Monozygotic Twins, by Tramo et al. See Appendix B for more
details.

first twin from a birth corresponds to the second twin in the same birth, so a paired t-test is suitable.
Since differences in either direction are of interest, a two-tailed test is used. The null hypothesis
for the test is that there is no difference in mean brain volume for first and second-born twins, and
the alternative hypothesis is that the mean brain volume for first-born twins is different to that of
second-born twins.

To perform the test, use the command:

> t.test(brains$Twin1, brains$Twin2, paired=T)

The output is shown below.

Paired t-test

data: brains$Twin1 and brains$Twin2
t = -0.4742, df = 9, p-value = 0.6466
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-49.04566 32.04566
sample estimates:
mean of the differences

-8.5

The mean difference in brain size is estimated at -8.5, meaning that the brain size of the first born
twins was an average of 8.5 cc less than that of their second born sibling. The confidence interval
for the difference is -49 to 32 cc.

The p-value of 0.6466 tells us that if the mean brain size for first and second born twins is the
same, the probability of observing a difference equal or greater to that in our sample is 65%. As
the p-value is not less than the significance level of 0.05, the null hypothesis cannot be rejected.
This means there is no evidence that brain size is related to birth order in twins.
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10.2 Wilcoxon rank-sum test

The Wilcoxon rank-sum test (also known as the Mann-Whitney U test) allows you test hy-
potheses about one or two sample means. It is a non-parametric alternative to the Student’s
t-test, which is suitable even when the distribution of the data is unknown and the samples are
small.23,55 In parallel with the t-test there are one-sample, two-sample and paired forms. The
alternative hypothesis can be either two-sided or one-sided.

Wilcoxon rank-sum test

You can perform a Wilcoxon rank-sum test with the wilcox.test function. The commands are
similar to those used to perform a t-test.

To perform a one-sample test, use the command:

> wilcox.test(dataset$sample1, mu=mu0)

To perform a two-sample test with data in stacked form, use the command:

> wilcox.test(values~groups, dataset)

If the grouping variable has more than two levels then you must specify which two you want to
compare, as shown below.

> wilcox.test(values~groups, dataset, groups %in% c("Group1",
"Group2"))

If your data is in unstacked form (with the values for each sample held in separate variables), use
the command:

> wilcox.test(dataset$sample1, dataset$sample2)

For a paired test, set the paired argument to T.

> wilcox.test(values~groups, dataset, paired=T)

To perform a one-tailed test, set the alternative argument to "greater" or "less", as
shown.

> wilcox.test(values~groups, dataset, alternative="greater")

By default, there is no confidence interval included with the output. To calculate a confidence
interval for the population mean (for one-sample tests) or difference between means (for paired and
two-sample tests), set the conf.int argument to T. The default size for the confidence intervals
is 95%, but you can adjust this with the conf.level argument.
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> wilcox.test(values~groups, dataset, conf.int=T, conf.level=0.99)

Example 10.4. Paired Wilcoxon rank-sum test using the sleep data

Consider the sleep dataset, which is included with R. The data gives the results of an experiment
in which ten patients each took two different treatments and recorded the amount of additional
sleep (compared to usual) that they experienced while receiving each of the treatments. The extra
variable gives the increase in sleep (in hours per night), the group variable gives the treatment
number (1 or 2) and the ID variable gives the patient number (1 to 10).

Suppose that you want to determine whether there is any real difference in the mean increase in
sleep offered by the two treatments. A Wilcoxon rank-sum test is suitable because the distribution
of additional sleep time is unknown, and the samples are small. A paired test is used because the
additional sleep experienced by patient number x while taking drug 1 corresponds to the additional
sleep experienced by patient number x while taking drug 2. The null hypothesis for the test is that
there is no difference in mean additional sleep for the two treatments. The alternative hypothesis is
that the mean additional sleep is different for the two treatments. A significance level of 0.05 will
be used.

As the data is in stacked form, you can perform the test with the command:

> wilcox.test(extra~group, sleep, paired=T)

This gives the results:

Wilcoxon signed rank test with continuity correction

data: extra by group
V = 0, p-value = 0.009091
alternative hypothesis: true location shift is not equal to 0

Warning messages:
1: In wilcox.test.default(x = c(0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, :
cannot compute exact p-value with ties

2: In wilcox.test.default(x = c(0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, :
cannot compute exact p-value with zeros

The p value of 0.009091 tells us that if the effect of both drugs were the same, there would be
less than 1% chance of observing a difference in mean sleep increase as large as the one seen in
this data. Since this is less than our significance level of 0.05, we can reject the null hypothesis of
that the additional sleep is the same for the two treatments. This means that there is evidence of
a difference in effectiveness between the two treatments.

R has given a warning that there are ties in the data. This means that some observations which have
exactly the same value for the variable of interest, because the measurements have only been taken
to one decimal place. For this reason, R is not able to calculate an exact p-value, and the results
should be interpreted with caution. A more in-depth explanation of the effect of tied data on the
Wilcoxon rank-sum test can be found on page 134 of Nonparametric Statistics for the Behavioural
Sciences, by S. Siegel and N.J. Castellan.26
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10.3 Analysis of variance

An analysis of variance (or ANOVA) allows you to compare the means of three or more inde-
pendent samples. It is suitable when the values are drawn from a normal distribution and when
the variance is approximately the same in each group. You can check the assumption of equal
variance with a Bartlett’s test (see Section 10.6). The null hypothesis for the test is that the
mean for all groups is the same, and the alternative hypothesis is that the mean is different for
at least one pair of groups.14

More complex models such as the two-way analysis of variance or the analysis of covariance
are covered in Chapter 11.

Analysis of variance

You can perform an analysis of variance with aov function. Since the ANOVA is a type of general
linear model, you could also use the lm or glm functions as explained in Chapter 11. However the
aov function presents the results more conveniently.

The command takes the form:

> aov(values~groups, dataset)

where values is the name of the variable that holds the data values and groups is the variable
that identifies which sample each observation belongs to. If your data is in unstacked form (with the
values for each sample held in separate variables) then you will need to stack the data beforehand,
as explained in Section 4.4.

The results of the analysis consist of many components which R does not automatically display.
If you save the results to an object as shown below, you can use further functions to extract the
various elements of the output.

> aovobject<-aov(values~groups, dataset)

Once you have saved the results as an object, you can view the ANOVA table with the anova
function.

> anova(aovobject)

To view the model coefficients, use the coef function.

> coef(aovobject)

To view confidence intervals for the coefficients, use the confint function.

> confint(aovobject)
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Example 10.5. Analysis of variance using the PlantGrowth data

Consider the PlantGrowth dataset (included with R), which gives the dried weight of three
groups of ten batches of plants, where each group of ten batches received a different treatment.
The weight variable gives the weight of the batch and the groups variable gives the treatment
received.

Suppose that you wish to perform an analysis of variance to determine whether there is any difference
in plant growth (as measured by weight of batch) between the three groups. You can assume that
plant growth is normally distributed, and that the variance is the same for all three treatments. A
significance level of 0.05 is used.

To perform the ANOVA and save the results to an object named plantanova, use the command:

> plantanova<-aov(weight~group, PlantGrowth)

To view the ANOVA table, use the command:

> anova(plantanova)

This gives the following output:

Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

group 2 3.7663 1.8832 4.8461 0.01591 *
Residuals 27 10.4921 0.3886
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We can see that the p-value for the group effect is 0.01591. This means that if the effect of all
three treatments were the same, we would have less than 2% chance of seeing differences between
groups as large or larger than this. As the p-value is less than the significance level of 0.05, we
can reject the null hypothesis that the mean growth is the same for all treatments, in favour of the
alternative hypothesis that the mean growth is different for at least one pair of treatments.

To see the size of the treatment effects, use the command:

> coef(plantanova)

(Intercept) grouptrt1 grouptrt2
5.032 -0.371 0.494

The output tells us that the control treatment gives an average weight of 5.032. The effect of
treatment 1 (trt1) is to reduce weight by an average of -0.371 units compared to the control
method, and the effect of treatment 2 (trt2) is to increase weight by an average of 0.494 units
compared to the control method.
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This example is continued in Example 10.7, where pairwise t-tests are used to further investigate the
treatment differences, and in Example 10.10, where a Bartlett’s test is used to check the assumption
of equal variance.

10.4 Kruskal-Wallis test

The Kruskal-Wallis test allows you to compare the mean values of three or more samples. It is a
non-parametric alternative to the analysis of variance, which can be used when the distribution
of the values is unknown.9,52

Kruskal-Wallis test

You can perform a Kruskal-Wallis test with the kruskal.test function. To perform the test
with stacked data, use the command:

> kruskal.test(values~groups, dataset)

where the values variable contains the data values and the groups variable indicates which
sample each observation belongs too.

For unstacked data (with samples in separate variables), nest the variables inside the list function
as shown below.

> kruskal.test(list(dataset$sample1, dataset$sample2,
dataset$sample3))

Example 10.6. Kruskal-Wallis test using grades1 data

Consider the grades1 dataset, shown in Figure 4.5 on page 54. It gives the test results (out of
100) of 15 students belonging to three different classes.

Suppose you want to use a Kruskal-Wallis test to determine whether there are any differences in the
effectiveness of the teaching methods used by each of the three classes, as measured by the mean
test results of the students. A significance level of 0.05 is used.

As the data is in unstacked form, you can perform the test with the command:

> kruskal.test(list(grades1$ClassA, grades1$ClassB, grades1$ClassC))

This gives the following output:

Kruskal-Wallis rank sum test

data: list(grades1$ClassA, grades1$ClassB, grades1$ClassC)
Kruskal-Wallis chi-squared = 6.6796, df = 2, p-value = 0.03544
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From the output you can see that the p-value is 0.03544. As this is less than the significance level
of 0.05, we can reject the null hypothesis that the mean score is equal for all classes. This means
that there is evidence of a difference in effectiveness between the teaching methods used by the
three classes.

10.5 Multiple comparison methods

After performing an analysis of variance and finding that there are some differences between
group means, you may want to perform a series of pairwise t-tests to identify differences
between specific pairs of groups. However, when performing a large number of t-tests, the
overall probability of incorrectly rejecting the null hypothesis for at least one of the tests
(the type I error) is greater than the significance level used for the individual tests. Multiple
comparison methods allow you to perform pairwise t-tests on three or more samples, while
controlling the overall type I error.12

There are a number of methods for performing multiple comparisons. Some of the most popular
are the Tukey’s honestly significant difference (HSD) test and the Bonferroni test.

Multiple comparison methods

10.5.1 Tukey’s HSD test

You can perform a Tukey’s HSD test with the TukeyHSD function. If you have previously performed
an analysis of variance using the aov, lm or glm functions and saved the results to an object (as
explained in Section 10.3), use the function directly.

> TukeyHSD(aovobject)

If you don’t have an aov object and are using raw data, nest the aov function inside the TukeyHSD
function, as shown below.

> TukeyHSD(aov(values~groups, dataset))

The default overall confidence level is 0.95, but you can adjust it with the conf.level argument.

> TukeyHSD(aovobject, conf.level=0.99)

Example 10.7. Tukey’s HSD test using the PlantGrowth data

In Example 10.5, an analysis of variance was used to help determine whether there are any differences
in mean plant growth (measured by weight of batch) between the three treatment groups. The
conclusion was that there is a difference in plant growth for at least one pair of treatments.
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Suppose you wish to continue this analysis by using pairwise t-tests to determine which treatment
groups have differences in plant growth. An overall significance level of 0.05 is used.

If you still have the plantanova aov object created in Example 10.5, you can perform the test
with the command:

> TukeyHSD(plantanova)

If you no longer have the model object, you can perform the test from the raw data as shown.

> TukeyHSD(aov(weight~group, PlantGrowth))

The output is shown below.

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = weight ~ group, data = PlantGrowth)

$group
diff lwr upr p adj

trt1-ctrl -0.371 -1.0622161 0.3202161 0.3908711
trt2-ctrl 0.494 -0.1972161 1.1852161 0.1979960
trt2-trt1 0.865 0.1737839 1.5562161 0.0120064

The diff column shows the difference in sample means for the two groups, while the lwr and upr
columns give a 95% confidence interval for the difference. The p adj column gives the p-value for
a t-test between the two groups, adjusting for multiple t-tests.

Comparing the p-values to our significance level of 0.05, we can see that the comparison trt2-trt1
is statistically significant. This means that the plant growth for treatment 1 is significantly different
from the growth for treatment 2. Treatment 1 and treatment 2 are not significantly different from
the control.

Treatment 2 is estimated to give 0.865 units more growth than treatment 1. The 95% confidence
interval for the difference in growth is 0.174 to 1.556.

10.5.2 Other pairwise t-tests

The pairwise.t.test function allows you to perform pairwise t-tests using a number of other
multiple comparison methods. To perform pairwise t-tests using the Bonferroni adjustment, use the
command:

> pairwise.t.test(dataset$values, dataset$groups,
p.adj="bonferroni")

Other possible options for the p.adj argument include holm (the default method), hochberg,
and hommel.30 Enter help(p.adjust) to view a complete list.
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Example 10.8. Pairwise comparisons with Bonferroni adjustment using the PlantGrowth data

Continuing the PlantGrowth example, suppose you wish to try performing pairwise t-tests using
the Bonferroni adjustment for comparison.

> pairwise.t.test(PlantGrowth$weight, PlantGrowth$group,
p.adj="bonferroni")

The results are shown below.

Pairwise comparisons using t tests with pooled SD

data: PlantGrowth$weight and PlantGrowth$group

ctrl trt1
trt1 0.583 -
trt2 0.263 0.013

P value adjustment method: bonferroni

The output shows p-values for each of the comparisons. From the output we can see that the
comparison of treatment 1 (trt1) and treatment 2 (trt2) has a p-value of 0.013, which is
statistically significant at the 0.05 level. The comparison between the the control and treatment 1,
and between the control and treatment 2 were not statistically significant. This is consistent with
the results of the Tukey’s HSD test in the previous example.

10.5.3 Pairwise Wilcoxon rank-sum tests

There is also a function called pairwise.wilcox.test which allows you to perform pairwise
Wilcoxon rank-sum tests. This is useful for identifying differences between individual pairs of groups
after performing a Kruskal-Wallis test as described in Section 10.4.

To perform the test, use the command:

> pairwise.wilcox.test(dataset$values, dataset$groups)

As when performing pairwise t-tests, you can adjust the multiple comparison method with the
p.adj argument.
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10.6 Hypothesis tests for variance

A hypothesis test for variance allows you to compare the variance of two or more samples to
determine whether they are drawn from populations with equal variance. The tests have the
null hypothesis that the variances are equal and the alternative hypothesis that they are not.20

These tests are useful for checking the assumptions of a t-test or analysis of variance.
Two types of test for variance are covered in this section:

F-test allows you to compare the variance of two samples. It is suitable for normally distributed
data.

Bartlett’s test allows you to compare the variance of two or more samples. It is suitable for
normally distributed data.20

Hypothesis tests for variance

10.6.1 F-test

You can perform an F-test with the var.test function. If your data is in stacked form, use the
command:

> var.test(values~groups, dataset)

If the groups variable has more than two levels then you must specify which two you want to
compare, as shown below.

> var.test(values~groups, dataset, groups %in% c("Group1", "Group2"))

For data in unstacked form (with the samples in separate variables), use the command:

> var.test(dataset$sample1, dataset$sample2)

Example 10.9. F-test using the iris dataset

In Example 10.2 we used a t-test to compare the mean sepal width for the Versicolor and Virginica
species of iris, using a pooled variance estimate. One of the assumptions made for this test was
that the variance in sepal width is the same for both species.

Suppose you want to use an F-test to help determine whether the variance in sepal width is the
same for the two species. A significance level of 0.05 will be used.

To perform the test, use the command:
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> var.test(Sepal.Width~Species, iris, Species %in% c("versicolor",
"virginica"))

The output is shown below.

F test to compare two variances

data: Sepal.Width by Species
F = 0.9468, num df = 49, denom df = 49, p-value = 0.849
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.5372773 1.6684117
sample estimates:
ratio of variances

0.9467839

The p-value of 0.849 is not less than the significance level of 0.05, so we cannot reject the null
hypothesis that the variance for the two groups is equal. There is no evidence to suggest that the
variance in sepal width is different for the Versicolor and Virginica species.

10.6.2 Bartlett’s test

You can perform the Bartlett’s test with the bartlett.test function. If your data is in stacked
form, use the command:

> bartlett.test(values~groups, dataset)

Unlike the F-test, the Bartlett’s test allows you to compare the variance of more than two groups.
However if required, you can still select a subset of groups to compare, as shown below.

> bartlett.test(values~groups, dataset, groups %in% c("Group1",
"Group2"))

If your have data in unstacked form (with the samples in separate variables), nest the variables
inside the list function as shown.

> bartlett.test(list(dataset$sample1, dataset$sample2,
dataset$sample3))

Example 10.10. Bartlett’s test using the PlantGrowth data

In Example 10.5 we used an analysis of variance to compare the mean weight of plant batches for
the three treatment groups. One of the assumptions made for this test was that the variance in
weight is the same for all treatment groups.

Suppose you want to use a Bartlett’s test to determine whether the the variance in weight is the
same for all treatment groups. A significance level of 0.05 will be used.

To perform the test, use the command:
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> bartlett.test(weight~group, PlantGrowth)

This gives the output:

Bartlett test of homogeneity of variances

data: weight by group
Bartlett’s K-squared = 2.8786, df = 2, p-value = 0.2371

From the output we can see that the p-value of 0.2371 is not less than the significance level of
0.05. This means we cannot reject the null hypothesis that the variance is the same for all treatment
groups. This means that there is no evidence to suggest that the variance in plant growth is different
for the three treatment groups.
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Test type Command

One-sample t-test t.test(dataset$sample1, mu=mu0)

Two-sample t-test t.test(values~groups, dataset)

t.test(dataset$sample1,
dataset$sample2)

Paired t-test t.test(values~groups, dataset,
paired=T)

t.test(dataset$sample1,
dataset$sample2, paired=T)

One-sample Wilcoxon rank-sum
test

wilcox.test(dataset$sample1, mu=mu0)

Two-sample Wilcoxon rank-sum
test

wilcox.test(values~groups, dataset)

wilcox.test(dataset$sample1,
dataset$sample2)

Paired Wilcoxon rank-sum test wilcox.test(values~groups, dataset,
paired=T)

wilcox.test(dataset$sample1,
dataset$sample2, paired=T)

Analysis of variance aov(values~groups, dataset)

Kruskal-Wallis test kruskal.test(values~groups, dataset)

kruskal.test(list(dataset$sample1,
dataset$sample2, dataset$sample3))

Tukey’s HSD test tukeyHSD(aovobject)

tukeyHSD(aov(values~groups, dataset))

Pairwise t-tests paired.t.test(dataset$values,
dataset$groups,
method="bonferroni")

Continued...

Chapter Summary: Hypothesis tests
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Test type Command

Pairwise Wilcoxon rank-sum
tests

paired.wilcox.test(dataset$values,
dataset$groups)

F-test var.test(values~groups, dataset)

var.test(dataset$sample1,
dataset$sample2)

Bartlett’s test bartlett.test(values~groups, dataset)

bartlett.test(dataset$sample1,
dataset$sample2)
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Chapter 11

Regression and general linear mo-
dels

A general linear model is used to predict the value of a continuous variable (known as the
response variable) from one or more explanatory variables. A general linear model takes the
form:

y = β0 + β1x1 + β2x2 + ......+ βnxn + ε

where y is the response variable, xi are the explanatory variables, βi are coefficients to be
estimated and ε represents the random error.19

The explanatory variables can be either continuous or categorical, and they can include cross
products, polynomials and transformations of other variables.

The random errors are assumed to be independent, to follow a normal distribution with a mean
of zero, and to have the same variance for all values of the explanatory variables.13

Simple linear regression, multiple linear regression, polynomial regression, analysis of variance,
two-way analysis of variance, analysis of covariance and experimental design models are all
types of general linear model.

General linear models

This chapter explains how to build a general linear model, interpret the results, check the validity
of the model and use the model to make predictions for new data.

This chapter uses the trees dataset (included with R) and the powerplant, concrete and
people2 datasets (which are available from the website and described in Appendix B).

11.1 Building the model

You can build a regression model or general linear model with either the lm function or the glm
function. When used for this purpose, these functions do the same thing and give similar output.
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In this book we will use the lm function for building general linear models, but be aware that you
may also see the glm function in use.

11.1.1 Simple linear regression

To build a simple linear regression model with an explanatory variable named var1 and a response
variable named resp, use the command:

> lm(resp~var1, dataset)

You don’t need to specify an intercept term (or constant term) in your model because R includes
one automatically. To build a model without an intercept term, use the command:

> lm(resp~-1+var1, dataset)

When you build a model with the lm function, R displays the coefficient estimates. However, there
are more components to the output that are not displayed, such as summary statistics, residuals
and fitted values. You can save the all of the output to an object, as shown below. Later in the
chapter, you will learn how to access the various components of the model output.

> modelname<-lm(resp~var1, dataset)

Example 11.1. Simple linear regression using the trees data

In Section 5.3.2 we saw that there is a correlation between tree girth and tree volume. Suppose you
want to build a simple linear regression model to predict a tree’s volume from its girth. To build
the model, use the command:

> lm(Volume~Girth, trees)

Call:
lm(formula = Volume ~ Girth, data = trees)

Coefficients:
(Intercept) Girth

-36.943 5.066

From the output you can see that the model formula is:

Volume = −36.943 + 5.066× Girth

To save the model output as an object, use the command:

> treemodel<-lm(Volume~Girth, trees)

The treemodel object will be used later in the chapter.



11.1. Building the model 149

11.1.2 Multiple linear regression

To include several explanatory variables in a model, separate them with the plus sign as shown
below.

> modelname<-lm(resp~var1+var2+var3, dataset)

Example 11.2. Multiple linear regression using the powerplant data

Consider the powerplant dataset, which is described in Appendix B and is available from the
website. The dataset has three variables. The Output variable gives the output of a gas elec-
trical turbine in megawatts. The Pressure and Temp variables give temperature and pressure
measurements inside the turbine.

To build a multiple linear regression model that predicts the output from the pressure and temper-
ature, use the command:

> lm(Output~Pressure+Temp, powerplant)

Call:
lm(formula = Output ~ Pressure + Temp, data = powerplant)

Coefficients:
(Intercept) Pressure Temp

-32.8620 0.1858 -0.9916

From the output you can see that the model is:

Volume = −32.8620 + 0.1858× Pressure− 0.9916× Temperature

11.1.3 Interaction terms

To add an interaction term to a model, use a colon (:). For example, var1:var2 denotes the
interaction between the two variables var1 and var2. The command below builds a model with
terms for two variables and their interaction.

> modelname<-lm(resp~var1+var2+var1:var2, dataset)

You can also use a colon to express third-order and higher interactions.

> modelname<-lm(resp~var1+var2+var3+var1:var2+var1:var3
+var2:var3+var1:var2:var3, dataset)
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As you can see, this notation becomes lengthy for models with many variables. R has two useful
shorthand notations for interaction terms, which are the asterisk (*) notation and the hat (^)
notation.

Use the asterisk notation to include a group of variable and all their possible interactions. For
example, the command:

> modelname<-lm(resp~var1*var2*var3, dataset)

builds a model with terms for the three variable main effects (var1, var2, var3), the three
second-order interactions (var1:var2, var1:var3, var2:var3) and the third-order interaction
(var1:var2:var3). This is equivalent to the previous very lengthy formula.

The hat notation includes a set of variable as well as all the possible interactions up to a given
order. For example, to include all main effects and second-order interactions (but not the third-
order interaction), use the command:

> modelname<-lm(resp~(var1+var2+var3)^2, dataset)

This is equivalent to the command below.

> modelname<-lm(resp~var1+var2+var3+var1:var2+var1:var3 +var1:var2,
dataset)

Example 11.3. Factorial experiment using the concrete data

Consider the concrete dataset, which is shown in Figure 11.1 and available from the website. It
gives the results of an experiment to determine the effect of cement type (I or II), additive type (A
or B) and additive dose (0.3%, 0.4% or 0.5%) on the density of concrete.

Figure 11.1: The concrete dataset. See Appendix B for more details.

To build a model to predict density that includes terms for all of the explanatory variables (cement
type, additive type and additive dose) and their interactions (second and third-order), use the
command:
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> concmodel<-lm(Density~Cement*Additive*Additive.Dose, concrete)

The concmodel object will be used later in the chapter.

11.1.4 Polynomial terms

To build a polynomial regression model with terms for var1, var12 and var13, use the command:

> modelname<-lm(resp~var1+I(var1^2)+I(var1^3), dataset)

Notice that the terms var1^2 and var1^3 are nested inside an I(). This is because the symbols
^, * and + have special meanings when used in a model formula, which can be confused with their
usual arithmetic meanings of power, multiplication and addition. If you want to use these symbols
for their usual arithmetic meanings, you must nest them inside the I function.

Example 11.4. Polynomial regression using the trees dataset

To build a model to predict tree volume that has terms for girth and girth2, use the command:

> lm(Volume~Girth+I(Girth^2), trees)

Call:
lm(formula = Volume ~ Girth + I(Girth^2), data = trees)

Coefficients:
(Intercept) Girth I(Girth^2)

10.7863 -2.0921 0.2545

From the result you can see that the model formula is:

Volume = 10.7863− 2.0921× Girth + 0.2545× Girth2

To save the model as an object, use the command:

> polytrees<-lm(Volume~Girth+I(Girth^2), trees)

The polytrees object will be used later in the chapter.

11.1.5 Transformations

Simple variable transformations such as the log or square root transformations can be applied to
the response or explanatory variables directly in the formula using the relevant function, as shown
below.
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> modelname<-lm(log(resp)~var1, dataset)

For transformations that use the asterisk, hat or plus symbols, nest them inside the I function as
shown.

> modelname<-lm(I(resp^2)~var1, dataset)

11.1.6 The intercept term

There may be occasions when you want to build a model without an intercept term. To do this,
add -1 as a term in the model, as shown below. This tells R not to include an intercept term,
which would otherwise be included automatically.

> modelname<-lm(resp~-1+var1+var2+var3, dataset)

You can also create a model which contains only the intercept term, known as the null model.

> modelname<-lm(resp~1, dataset)

11.1.7 Including factor variables

You can include categorical variables in your model in the same way as continuous variables. Before
including a categorical variable, use the class function to check that it has the factor variable
class as explained in Section 3.6.

When you include a factor variable in a model, R treats the first level of the factor as the reference
level. So for a factor with n level, the model will have n− 1 coefficients that express the effect of
the remaining n− 1 levels relative to the reference level.

To check which is the first level for a factor variable, use the levels function.

> levels(dataset$variable)

You can change the reference level for a factor variable with the relevel function:

> dataset$variable<-relevel(dataset$variable, "reflevel")

It is possible to change the way that R uses the coefficients to express the effect of the fac-
tor by changing the contrasts for the factor variable. Every factor variable has a set of con-
trasts associated with it, which you can view and change with the contrasts function. Enter
help(contrasts) for more details on how to change the contrasts for a factor variable, and
enter help(contr.treatment) for a list of contrast options.
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Example 11.5. Model with factor variable, using the people2 dataset

Suppose that you want to use the people2 dataset to build a model to predict a person’s height
from their hand span and eye colour.

You can build the model with the command:

> lm(Height~Hand.Span+Eye.Colour, people2)

Call:
lm(formula = Height ~ Hand.Span + Eye.Colour, data = people2)

Coefficients:
(Intercept) Hand.Span Eye.ColourBrown Eye.ColourGreen

82.8902 0.4456 -3.6233 -4.1924

From the output we can see that formula has two coefficients that express the effect of brown and
green eyes on height relative to blue eyes. So for people with blue eyes, the model formula is:

Height = 82.8902 + 0.4456× HandSpan

The formula for people with brown eyes is:

Height = 82.8902 + 0.4456× HandSpan− 3.6233

The formula for people with green eyes is:

Height = 82.8902 + 0.4456× HandSpan− 4.1924

11.1.8 Updating a model

Once you have built a model, you may want to add or remove a term from the model to see how the
new model compares with the previous one. The update function allows you build a new model
by adding or removing terms from an existing model. This is useful when working with models that
have many terms, as it means that you don’t have to retype the entire model specification every
time you add or remove a term.

Suppose that you have build a model and saved it to an object named model1, as shown below.

> model1<-lm(resp~var1+var2+var3+var4, dataset)
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To create a new model named model2 by adding an additional term to model1 (such as the
interaction var1:var2), use the command:

> model2<-update(model1, ~.+var1:var2)

Similarly you can remove a term from the model as shown.

> model2<-update(model1, ~.-var4)

To check that the new model has the formula you expect, use the formula function.

> formula(model2)

Example 11.6. Updating the concmodel model

In Example 11.3, we build the concmodel model with the command:

> concmodel<-lm(Density~Cement*Additive*Additive.Dose, concrete)

To create a new model by removing the three-way interaction from the concmodel model, use
the command:

> concmodel2<-update(concmodel, ~.-Cement:Additive:Additive.Dose)

Check the model formula for the new model with the command:

> formula(concmodel2)

Density ~ Cement + Additive + Additive.Dose + Cement:Additive +
Cement:Additive.Dose + Additive:Additive.Dose

11.1.9 Stepwise model selection procedures

Stepwise model selection procedures are algorithms designed to simplify the process of finding
a model that explains a large amount of variation while including as few terms as possible.
They are useful when dealing which large models with many potential terms. Popular step-
wise selection procedures include forward selection, backward elimination and general stepwise
selection.45

Stepwise model selection procedures



11.1. Building the model 155

The step function allows you to perform forward, backward and stepwise model selection. The
function takes an lm or glm model object as input, which should be the full model from which you
want to select a subset of terms.

Suppose that you have created a large model such as the one shown below, which includes a total
of fifteen terms: four main effects; six second-order interactions; four third-order interactions and
one fourth-order interaction.

> model1<-lm(resp~var1*var2*var3*var4, dataset)

Once you have create the model, perform the stepwise selection procedure with the command:

> model2<-step(model1)

By default, the step function uses the general stepwise selection method. To use the backward or
forward methods, set the direction argument to "backward" or "forward" as shown.

> model2<-step(model1, direction="backward")

The newly created model object can be used in just the same way as any other model object. To
see which terms have been kept in the new model, use the formula function.

> formula(model2)

Example 11.7. Stepwise selection using the concrete data

In Example 11.3, we build the concmod model with the command:

> concmodel<-lm(Density~Cement*Additive*Additive.Dose, concrete)

To perform the stepwise selection procedure on this model, use the command:

> concmodel3<-step(concmodel)

To view the formula of the resulting model, use the command:

> formula(concmodel3)

Density ~ Cement + Additive + Additive.Dose + Cement:Additive

From the output you can see that the stepwise selection procedure has removed the three-way
interaction and two of the two-way interaction terms from the model, leaving the main effects of
cement type, additive type and additive dose, and the interaction between cement type and additive
type.
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11.2 Summarising the model

Coefficient of determination (R2) gives an indication of how well the model is likely to
predict future observations. It measures the portion of the total variation in the data
that the model is able to explain. It takes values between 0 and 1. A value close to 1
suggests that the model will give good predictions, while a value close to 0 suggests that
the model will make poor predictions.39

Adjusted R-squared is similar to R2, but makes an adjustment for the number of terms in
the model.

Significance test for model coefficients tells you whether individual coefficient estimates
are significantly different from 0, and hence whether the coefficients are contributing to
the model. Consider removing coefficients with p-values greater than 0.05.17

F-test tells you whether the model is significantly better at predicting compared with using
the overall mean value as a prediction. For good models, the p-value will be less than
0.05.16

Model summary statistics

To view some summary statistics for a model, use the summary function:

> summary(lmobject)

The summary function displays:

• the model formula
• quantiles for the residuals
• coefficient estimates with the standard error and a significance test for each
• the residual standard error and degrees of freedom
• the R2 (multiple and adjusted)
• an F-test for model fit.

Note that if you built your model with the glm function instead of the lm function, the output will
be slightly different and will use the generalized linear model terminology.

To view an ANOVA table for the model, use the anova function.

> anova(lmobject)

Example 11.8. Model summary statistics for the treemodel model
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In Example 11.1 we created a simple linear regression model to predict tree volume from tree girth
and saved the output to an object named treemodel.

To view summary statistics for the model, use the command:

> summary(treemodel)

This gives the following output.

Call:
lm(formula = Volume ~ Girth, data = trees)

Residuals:
Min 1Q Median 3Q Max

-8.065 -3.107 0.152 3.495 9.587

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
Girth 5.0659 0.2474 20.48 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.252 on 29 degrees of freedom
Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

The R2 value of 0.9353 tells us that the model explains approximately 94% of the variation in tree
volume. This suggests the model would be very good at predicting tree volume.

The hypothesis tests for the model coefficients tell us that the intercept and girth coefficients are
significantly different from zero.

The p-value for the F-test is less than 0.05, which tells us that the model explains a significant
amount of the variation in tree volume.

To view the ANOVA table, use the command:

> anova(treemodel)

Analysis of Variance Table

Response: Volume
Df Sum Sq Mean Sq F value Pr(>F)

Girth 1 7581.8 7581.8 419.36 < 2.2e-16 ***
Residuals 29 524.3 18.1
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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11.3 Coefficient estimates

Coefficient estimates (or parameter estimates) are provided with the summary output, but you can
also view them with the coef function, or the identical coefficients function.

> coef(lmobject)

To view confidence intervals for the coefficient estimates, use the confint function.

> confint(lmobject)

The function gives 95% intervals by default, but you can adjust this with the level argument.

> confint(lmobject, level=0.99)

Example 11.9. Coefficients estimates for the treemodel model

To view coefficient estimates for the treemodel, use the command:

> coef(treemodel)

(Intercept) Girth
-36.943459 5.065856

To view confidence intervals for the coefficient estimates, use the command:

> confint(treemodel)

2.5 % 97.5 %
(Intercept) -43.825953 -30.060965
Girth 4.559914 5.571799

From the output you can see that the 95% confidence interval for the intercept is -43.83 to -30.06,
and the 95% confidence interval for the Girth coefficient is 4.56 to 5.57.

11.4 Plotting the line of best fit

For simple linear regression models, you can create a scatter plot with a line of best fit superimposed
over the data to help visualise the model. Use the plot and abline functions as shown.

> plot(resp~var1, dataset)
> abline(coef(lmobject))
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See Section 8.7 for more details about creating scatter plots with the plot function, and Section
9.7.1 for more about adding straight lines with the abline function.

For polynomial regression models, you can superimpose a polynomial curve over the data. Use the
curve function, as explained in Section 8.10.

Example 11.10. Scatter plot with line of best fit for the treemodel model

To create a scatter plot with line of best fit for the treemodel, use the commands:

> plot(Volume~Girth, trees)
> abline(coef(treemodel))

The result is shown in Figure 11.2a.

(a) Simple linear regression (b) Polynomial regression

Figure 11.2: Scatter plots with models superimposed

Example 11.11. Scatter plot with polynomial curve for the polytrees model

In Example 11.4 we created a polynomial regression model named polytrees to predict tree
volume from tree girth. To view the model coefficients for the polytrees model, use the coef
function.

> coef(polytrees)

(Intercept) Girth I(Girth^2)
10.7862655 -2.0921396 0.2545376

To create a scatter plot with curve superimposed, use the curve function as shown.
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> plot(Volume~Girth, trees)
> curve(10.7863-2.0921*x+0.2545*x^2, add=T)

Figure 11.2b shows the result.

11.5 Model diagnostics

This section discusses the methods used to check the suitability of the model for the data and
the reliability of the coefficient estimates. These include examining the model residuals and the
influence and Cook’s distances for each of the observations.

11.5.1 Residual analysis

The residuals for a given model are the set of differences between the observed values of the
response variable, and the values predicted by the model (the fitted values). Standardised
residuals and studentised residuals are types of residuals that have been adjusted to have a
variance of one.4

Examining the set of residuals for a model helps you to determine whether the model is
appropriate. If the assumptions of a general linear model are met, then the residuals will be
normally distributed and have constant variance. They will also be independent and will not
follow any observable patterns. Residuals also help you to identify any observations that heavily
influence the model.1

Residuals

To calculate raw residuals for a model, use the residuals function. There is also an identical
function called resid. To calculate standardised residuals, use the rstandard function and for
studentised residuals, use the rstudent function.

> residuals(lmobject)

You can save the residuals to a new variable in your dataset, as shown below. This is useful if you
want to plot the residuals against the response or explanatory variables.

> dataset$resids<-rstudent(lmobject)

Similarly, you can create a new variable containing fitted values with the fitted function.

> dataset$fittedvals<-fitted(lmobject)
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To can use the plot function to create residual plots for a model object.

> plot(lmobject, which=1)

Use the which argument to select from the following plots:

1. Residuals against fitted values
2. Normal probability plot of residuals
3. Scale-location Plot
5. Residuals against leverage

The numbers 4 and 6 select plots of influence measures, which you will learn about in the next
section.

Some other useful plots of residuals include a histogram of residuals, for checking the assumption
of normality:

> hist(dataset$resids)

A plot of residuals against the response variable:

> plot(resids~resp, dataset)

A plot of the residuals against the explanatory variable:

> plot(resids~var1, dataset)

Example 11.12. Residual plots for the treemodel model

Suppose that you wish to analyse the residuals for the treemodel model, to check that the
assumptions of the model are met.

First, save the studentised residuals to the trees dataset as shown.

> trees$Resids<-rstudent(treemodel)

Next, set up the graphics device to display six plots, as explained in Section 9.10.

> par(mfrow=c(3,2))

Next use the relevant commands to create the following plots: histogram of residuals; normal proba-
bility plot of the residuals; residuals against fitted values; residuals against response (Volume); resid-
uals against explanatory variable (Girth); residuals against other variable of interest (Height).

> hist(trees$Resids)
> plot(treemodel, which=2)
> plot(treemodel, which=1)
> plot(Resids~Volume, trees)
> plot(Resids~Girth, trees)
> plot(Resids~Height, trees)
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Figure 11.3: Residual plots for the treemodel model
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Figure 11.3 shows the result.

From the histogram and normal probability plot, we can see that the residuals are approximately
normally distributed.

In the plot of residuals against fitted values and the plot of residuals against girth, we can see that
there is a slight pattern in the residuals. The residuals tend to be negative for trees with medium
girth, and positive for trees with very small or very large girth. This suggests that adding polynomial
terms to the model may improve the fit.

There are no obvious patterns in the plots of residual against volume and height. There are also no
obvious outliers in any of the plots.

11.5.2 Leverage

The leverage helps to identify observations that have outlying values or unusual combinations
for the explanatory variables. A large leverage value indicates that the observation may have a
big influence on the model.8

Leverage

To calculate the leverage of each observation for a given model, use the hatvalues function.

> hatvalues(lmobject)

To create a plot of the residuals against the leverage, use the command:

> plot(lmobject, which=5)

To create a plot of the Cook’s distances against the leverage, use the command:

> plot(lmobject, which=6)

11.5.3 Cook’s distances

The Cook’s distance for an observation is a measure of how much the model parameters change
if the observation is removed before estimation. Large values indicate that the observation has
a big influence on the model.24

Cook’s distances
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To calculate the Cook’s distances for a model, use the cooks.distance function.

> cooks.distance(lmobject)

You can create a plot of Cook’s distance against observation number with the command:

> plot(lmobject, which=4)

and a plot of Cook’s distance against leverage with the command:

> plot(lmobject, which=6)

Example 11.13. Leverage and Cook’s distances for the treemodel

Suppose you want to create a set of plots for the treemodel regression model, to help identify
any observations which may have a large influence on the model.

First set up the graphics device to hold four plots, as explained in Section 9.10.

> par(mfrow=c(2,2))

Then create the three plots showing leverage and Cook’s distances, as shown below.

> plot(treemodel, which=4)
> plot(treemodel, which=5)
> plot(treemodel, which=6)

The result is shown in Figure 11.4. The plots suggest that observation number 31 has a large
influence on the model.

11.6 Making predictions

Once you have built a model that you are happy with, you may want to use it to make predictions
for new data. R has a convenient function for making predictions, called predict. To use this
function, the new data must be arranged in a data frame (see Section 2.1 for how to create data
frames). The explanatory variables in the new dataset should be given identical names to those in
the original dataset from which the model was built. It does not matter if the order of the variables
is different, or if there are additional variables present.

Once your new data is arranged in a data frame, you can use the predict function as shown.

> predict(lmobject, newdata)

The commands creates a vector of predictions which correspond to the rows of the data frame. You
can attach it to the data frame as a new variable, as shown below:
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Figure 11.4: Influence plots for treemodel model

> newdata$predictedvalues<-predict(lmobject, newdata)

You can also use the predict function to calculate confidence or prediction intervals for your pre-
dictions. Recall that confidence intervals only account for the uncertainty of the model estimation,
while prediction interval also account for natural random variation in the response variable.

To calculate a confidence interval, set the interval argument to "confidence" and for a
prediction interval, set it to "prediction". You can adjust the size of the interval with the
level argument.

> predict(lmobject, newdata, interval="confidence", level=0.99)

Example 11.14. Making predictions using treemodel
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Suppose you want to use the treemodel regression model to estimate the volume of three trees
with girths of 17.2, 12.0 and 11.4 inches.

First put the new data into a data frame, as shown below.

> newtrees<-data.frame(Girth=c(17.2, 12.0, 11.4))

To make the predictions and add them to the newtrees data frame, use the command:

> newtrees$predictions<-predict(treemodel, newtrees,
interval="prediction")

Then view the contents of the dataset.

> newtrees

Girth prediction.fit prediction.lwr prediction.upr
1 17.2 50.18927 41.13045 59.24809
2 12.0 23.84682 14.98883 32.70481
3 11.4 20.80730 11.92251 29.69210

From the output you can see that for a tree with a girth of 17.2 inches, the predicted volume is
50.2 cubic feet with a prediction interval of 41.1 to 59.2.
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Task Command

Build simple linear regression
model

lm(resp~var1, dataset)

Build multiple regression model lm(resp~var1+var2+var3, dataset)

Build model with interaction term lm(resp~var1+var2+var1:var2, dataset)

Build model with interaction terms
to a given order

lm(resp~(var1+var2+var3)^2, dataset)

Build factorial model lm(resp~var1*var2*var3, dataset)

Build polynomial regression model lm(resp~var1+I(var1^2)+I(var1^3),
dataset)

Build model with log-transformed
response variable

lm(log(resp)~var1+var2+var3, dataset)

Build model without intercept term lm(resp~-1+var1+var2+var3, dataset)

Build null model lm(resp~1, dataset)

Update a model update(lmobject, ~.+var4)

Stepwise selection step(lmobject)

Summarise a model summary(lmobject)

Coefficient estimates coef(lmobject)

Confidence interval for coefficient
estimate

confint(lmobject)

Plot line of best fit plot(resp~var1, dataset)
abline(coef(lmobject))

Raw residuals residuals(lmobject)

Standardised residuals rstandard(lmobject)

Studentised residuals rstudent(lmobject)

Chapter Summary: General linear models
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Task Command

Fitted values fitted(lmobject)

Residuals and influence plots plot(lmobject, which=1)

Leverage hatvalues(lmobject)

Cook’s distances cooks.distance(lmobject)

Predictions predict(lmobject, newdata)

Chapter Summary: General linear models
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Chapter 12

Basic programming

As well being a piece of statistical software, R is also a programming language. The topic of R
programming is beyond the scope of this book. However, this chapter gives a brief introduction to
basic programming and writing your own functions.

When programming, use a script file so that you can edit your code easily. Remember to add plenty
of comments with the hash symbol (#), so that your script can be understood by others or by
yourself at a later date.

12.1 Creating new functions

To create a new function, the script takes the following general form:

functionname<-function(arg1name, arg2name, ..., argNname) {

command(s)

return(outputvalue)
}

All of the indentation and additional blank lines are optional, but they help to show the hierarchy
of the program and are considered good programming practise.

The first line determines the name of the function and the names of the input arguments. You can
include as many arguments as required, or none at all. Optionally you can assign default values to
the arguments, as shown below.

functionname<-function(arg1name=value1, arg2name=value2, ..., argNname=valueN) {

command(s)

return(outputvalue)
}
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This first line of the script ends with an opening curly bracket. After this is where the main content
of the function begins. Generally this is a set of command that manipulate the input arguments
in some way, or perform calculations from them, in order to create an output. The commands can
make use of existing functions, including any that you have written yourself. Note that any objects
that you create within a function exist only inside the function and are not saved to the workspace.

The return function determines the output of the function, which is either displayed in the console
or assigned to an object whenever the function is used. It can either be a literal value such as a
number or character string, or a it can be a vector, data frame or any other type of object.

Instead of using the return function in the final command, you can use the print function,
which always displays the output in the console window even if the output is assigned to an object.
Alternatively you may want to a create a function that produces a plot instead of giving an output
value. In this case the final command would be plot or another plotting function.

Finally, the script ends with a closing curly bracket.

Once you have written your function and run the script, the function is saved to the workspace as
an object and is available to use for as long as the current workspace is loaded. You can use it just
like a built-in function.

> functionname(value1, value2, ..., valueN)

Example 12.1. A function for cubing a value

The script below creates a simple function which takes a single value as input and calculates the
cube root.

cube.root<-function(x) {

y<-x^(1/3)
return(y)

}

Once you have written the function and run the script, the cube.root function is available to use
as shown.

> cube.root(5)
[1] 1.709976

Example 12.2. A function for calculating the hypotenuse of a triangle

The script below creates a simple function which calculates the length of the hypotenuse of a
triangle, given the lengths of the other two sides (recall that the formula is c2 = a2 + b2).
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hypot<-function(a=2, b=3) {

c=sqrt(a^2+b^2)
return(c)

}

Once the function is written and the script run, you can use it as shown.

> hypot(6, 7)
[1] 9.219544

As the arguments have been given default values, the function still works if one of both of them are
missing.

> hypot(b=2)
[1] 2.828427

Example 12.3. A function that creates a histogram of random numbers

The script below creates a function that generates a specified amount of random numbers from a
standard normal distribution and plots them in a histogram.

randhist<-function(n) {

vector1<-rnorm(n) # Generate n random numbers
hist(vector1) # Plot histogram

}

Once the function is written and the script has been run, you can use it as shown.

> randhist(50)

12.2 Conditional statements

A conditional statement allows you to perform a command or set of commands only under certain
circumstances (called the condition). Conditional statements add flexibility to your functions, as
they allow the function to behave in different ways depending on the input.

There are a few types of conditional statement which allow you to do slightly different things. Before
looking at these, you need to understand conditions and how they are constructed in R.
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12.2.1 Conditions

In programming, a condition is an expression that can be either true or false. For example, the
condition ’4<5’ (4 is less than 5) is true, whilst the condition ’5==8’ (5 is equal to 8) is false.

If you enter a condition at the command prompt, R tells you whether it is true or false:

> 6>8
[1] FALSE

A condition must contain at least one comparison operator (also known as a relational operator).
In the example above, the comparison operator is > (greater than). Table 12.1 gives a list of
comparison operators that you can use to form conditions.

Operator Meaning

== Equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
%in% In

Table 12.1: Comparison operators

The %in% operator compares a single value with all members of a vector, as shown below.

> vector1<-c(4,2,1,6)
> 2 %in% vector1
[1] TRUE

Conditions containing only constant values are not very useful because we already know in advance
whether they are true or false. More useful are conditions that include objects, such as ’object1<5’
(the value of object1 is less than 5). Whether or not this condition is true depends on the value
of object1.

> object1<-4
> object1<5
[1] TRUE

You can join two or more conditions to form a larger one, using the OR and AND operators.

The AND operator is denoted &. When two expressions are joined with the AND operator, both
must be true in order for the whole condition to be true. For example, the condition below is false
because only one of the expressions is true.
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> 3<5 & 7<5
[1] FALSE

The statement below is true because both of the expressions are true.

> 3<5 & 7>5
[1] TRUE

The OR operator is denoted |. When two expressions are joined with the OR operator, the overall
condition is true if either one or both of the expressions are true. For example, the condition below
is true because one of the expressions is true.

> 3<5 | 7<5
[1] TRUE

The condition is also true when both expressions are true.

> 3<5 | 7>5
[1] TRUE

You can negate a condition with the ! operator. This reverses the result of the condition.

> !3<5
[1] FALSE

If the condition is complex, you can use brackets to negate the entire condition as shown below.

> !(3<5 & 7<5)
[1] TRUE

12.2.2 If statement

The simplest form of conditional statement is the if statement. The if statement consists of a
condition and a command. When R runs an if statement, it first checks whether the condition is
true or false. If the condition is true, it runs the command and if it is false it does not. The general
form for the statement is shown below.49

if (condition) command

You can also include a group of several commands in an if statement, by placing them between
curly brackets as shown.

if (condition) {

commands to be performed if condition is true

}
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The if statement is very useful as part of a function, as illustrated in the following example.

Example 12.4. A function for calculating body mass index

A person’s body mass index (BMI) is calculated from his or her height in metres and weight in
kilograms using the formula:21

BMI =
Weight

Height2

If imperial measurements are used (height in inches and weight in pounds), the formula is:

BMI =
Weight× 702

Height2

The script below creates a function to calculate the BMI from a height and weight. By default
the function calculates the BMI assuming that the metric measurements have been supplied. If the
user sets the units argument to "imperial", the function makes the appropriate adjustment
for imperial measurements. Notice the use of the if statement to control whether the adjustment
is made.

bmi<-function(height, weight, units="metric") {

bmi=weight/height^2
if (units=="imperial") bmi<-bmi*702
return(bmi)

}

Once the script has been run, you can use the function to calculate BMI using metric measurements:

> bmi(1.7, 70)
[1] 24.22145

or imperial measurements:

> bmi(66, 125, "imperial")
[1] 20.17332
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12.2.3 If/else statement

The if/else statement extends the if statement to include a second command (or set of commands)
to be performed if the condition is false. The general form is shown below.49

if (condition) command1 else command2

You can include groups of commands between curly brackets as shown.

if (condition) {

commands to be performed if condition is true

} else {

commands to be performed if condition is false

}

You can also extend the if/else statement to accommodate three or more possible outcomes, as
shown below.

if (condition1) command1 else if (condition2) command2 else command3

When running the statement, R begins by checking whether the first condition is true or false. If it
is true, then the first command is run. If the first condition is false, then R proceeds to check the
second condition. If the second condition is true then the second command is run. Otherwise, the
final command is run.

Example 12.5. A function for classifying dates

The script below creates a function for classifying a date (given in the format ddmmmyyyy) as a
weekend or a weekday.

day.type<-function(date) {

date1<-as.Date(date, "%d%b%Y")
if (weekdays(date1) %in% c("Saturday", "Sunday")) return ("Weekend") else

return("Weekday")

}

The function gives a different output depending on whether the input date is a weekend or a weekday.

> day.type("30AUG2012")
[1] "Weekday"
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> day.type("01SEP2012")
[1] "Weekend"

Example 12.6. A function for classifying heights

The script below creates a function that takes a height in centimetres as input, and gives a height
category as output. Heights below 140 cm are classified as ’Short’, heights between 140 cm and
180 cm as ’Medium’ and heights over 180 cm as ’Tall’.

heightcat<-function(height) {

if (height<140) return("Short") else if (height<180) return("Medium") else
return("Tall")

}

Once you have run the script, you can use the function as shown.

> heightcat(136)
[1] "Short"

> heightcat(187)
[1] "Tall"

12.2.4 The switch function

In some circumstances, you can use the switch function as a compact alternative to using if/else
statements with many possible outcomes. The switch function selects between a list of alternative
commands, each of which must return a single value. R compares the input with a list of options,
and if it finds a match then it performs the corresponding command. The final command (which is
optional) is performed if the input does not match any of the options.37

> switch(input, option1=command1, option2=command2, option3=command3, command4)

There is another use of the switch function which takes an integer value as input, and outputs
the corresponding value from a list of values.

> switch(input, value1, value2, value3, value4)

Example 12.7. Function to perform a selected calculation with two numbers

The script below creates a function which allows the user to give two numbers and a calculation
type. The switch function is used to select from several commands, depending on which option the
user selects.
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func1<-function(number1, number2, calctype="add") {

result<-switch(calctype,
"multiply"=number1*number2,
"divide"=number1/number2,
"add"=number1+number2,
"subtract"=number1-number2,
"exponent"=number1^number2,
"Invalid calculation type"

)

return(result)
}

Once the script has been run, you can use the function as shown below.

> func1(2, 3, "divide")
[1] 0.6666667

> func1(2, 3, "mean")
[1] "Invalid calculation type"

Example 12.8. Function for giving the name of the day of the week

The script below creates a function named week.day that takes a number from 1 to 7 as input,
and returns a character string giving the corresponding day of the week.

week.day<-function(daynum) {

dayname<-switch(daynum,
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",
"Sunday"

)

return(dayname)

}

Once you have run the script, you can use it as shown below.

> week.day(2)
[1] "Tuesday"



178 Chapter 12. Basic programming

12.3 Loops

Loops allow you to repeat a command (or set of commands) a number of times. The two most
important types of loop are the for loop and the while loop.

12.3.1 For loop

The for loop allows you want to repeat a command or set of commands a prespecified number of
times. The for loop takes the following general form:49

for (i in startvalue:endvalue) command

You do not have to use i for the repetition number as shown above. Any valid object name can be
used, however i is conventional. The startvalue and endvalue can be either constant values
or object names.

You can also include a set of commands to be repeated by enclosing them within curly brackets, as
shown below.

for (i in startvalue:endvalue) {

commands to be repeated

}

Example 12.9. Function for calculating times tables

The script below creates a function that takes a single number as input, multiplies it by each of the
numbers 1 to 10 and displays the results in the console window. The for loop is used to repeat the
calculation for each of the numbers 1 to 10.

times.table<-function(x) {

for (i in 1:10) {
result=x*i
text=paste(x, "times", i, "equals", result)
print(text)

}
}

Once the script has been run, you can use the function as shown.

> times.table(5)
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[1] "5 times 1 equals 5"
[1] "5 times 2 equals 10"
[1] "5 times 3 equals 15"
[1] "5 times 4 equals 20"
[1] "5 times 5 equals 25"
[1] "5 times 6 equals 30"
[1] "5 times 7 equals 35"
[1] "5 times 8 equals 40"
[1] "5 times 9 equals 45"
[1] "5 times 10 equals 50"

12.3.2 While loop

The while loop is suitable when you want to repeat a command or set of commands until a given
condition is satisfied, and you don’t know in advance how many repetitions will be required in order
to achieve this. The general form for the while loop is shown below.49

while (condition) command

To include a group of commands, use curly brackets as shown.

while (condition) {

commands to be repeated

}

The commands within the loop should do something that will affect whether or not the condition
is true, otherwise R will keep processing the commands infinitely. Consider the example below:

b<-2

while (b<3) a<-4

As the command within the loop is unrelated to the condition, the condition continues to be true
each time the loop is repeated. This causes R to keep repeating the loop indefinitely and to stop
responding. If you find R is stuck repeating a loop, press the escape key to cancel the commands.

Example 12.10. Function for simulating die rolls

The following script creates a function which simulates die rolls. The function keeps rolling imaginary
dice until a six is rolled.
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die.rolls<-function() {

roll<-0 # Create the variable before using it in the loop

while (roll!=6) {
roll<-sample(1:6, 1) # Generate a random number between 1 and 6
print(roll)

}
}

Once the script is run, you can use the function as shown.

> die.rolls()
[1] 1
[1] 1
[1] 5
[1] 6

> die.rolls()
[1] 1
[1] 3
[1] 3
[1] 1
[1] 3
[1] 6
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Task General form

Create a function functionname<-function(arguments) {
command(s)
return(output)

}

if statement if (condition) command

if/else statement if (condition) command1 else command2

if/else statement (extended) if (condition1) command1 else if
(condition2) command2 else command3

switch function switch(input, value1, value2, valueN)

switch(input, option1=command1,
option2=command2, optionN=commandN)

for loop for (i in startval:endval) command

while loop while (condition) command

Chapter Summary: Basic programming
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Appendix A

Add-on packages

Over three thousand add-on packages are available for R, which serve a wide variety of purposes.
An add-on package contains additional functions and sometimes objects such as example datasets.
This appendix explains how to find a package that serves your purpose and install it.

Viewing a list of available add-on packages

To view a list of available add-on packages, follow the instructions below:

1. Go to the R project website at www.r-project.org.

2. Follow the link to ‘CRAN’ (on the left-hand side).

3. You will be taken to a list of sites that host the R installation files (mirror sites). Select a site
close to your location.

4. Select ‘Packages’ from the menu on the left-hand side.

5. Select ‘Table of available packages, sorted by name’.

A list of packages with descriptions of their purpose is displayed. You can use the browser tools to
search the list, usually by entering Ctrl+F or Cmd+F.

On selecting a suitable package, a manual is available in pdf format. You will notice that the
package is available to download, but you do not need to do this as it is simpler to install the
package from within the R environment.

Installing and loading add-on packages

To use an add-on package you must first install it, which only needs to be done once. There are a
number of packages that are included with the R base installation, which do not need to be installed.
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Once a package is installed, it must be loaded before you can use the functions within. The functions
will be available for the remainder of the session, so you will need to load the package during each
session that you intend to use it.

You can install and load packages from within the R environment, which is explained separately for
Windows, Mac and Linux users.

Windows users

To install a package:

1. Select ‘Install package(s)’ from the ‘Package’ menu.

2. The first time you install a package, you will be prompted to select a mirror site. Select a site
close to your location.

3. When prompted, selected the required package from the list.

To load a package:

1. Select ‘Load package’ from the ‘Packages’ menu.

2. When prompted, select the required package from the list.

Mac users

To install a package:

1. Select ‘R Package Installer’ from the ‘Packages & Data’ menu.

2. Press ‘Get List’

3. A list of packages is displayed. Select the required package and press ‘Install Selected’.

4. Close the window.

To load a package:

1. Select ‘R Package Manager’ from the ‘Packages & Data’ menu.

2. Tick the status box next to the required package so that the status changes to ‘loaded’.
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Linux users

To install a package:

1. Enter the command:

download.packages(packagename, "/home/Username/folder").

The file path gives the location in which to save the package.

2. When prompted, select a mirror site close to your location.

To load a package:

1. Enter the command:

install.packages("packagename")
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Appendix B

Datasets

Description Details of 32 one-bedroom apartments advertised for rent within a 5 mile
radius of Bishops Stortford, Hertfordshire, UK in October 2012.

Variables Town Location of apartment.

Furnished Provided furnished (Yes or No)

Price.Cat Rental price category (per calender month)

Source www.rightmove.co.uk

apartments

Description Average weights for four big cat species

Variables Name Name of species. Note that first instant of Leopard
refers to Pantera Pardus and the second instance refers
to Unica unica (Snow Leopard).

Weight Mean weight in kilograms for male of species

Source dialspace.dial.pipex.com/agarman/facts1.htm

bigcats

Description Dataset giving the volume of liquid within thirty bottles of soft drink randomly
selected from a production line. This is fictional data.

Variables Volume Volume (millilitres)

bottles
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Description Brain volume for ten pairs of monozygotic twins, measured using magnetic
resonance imaging and computer-based image analysis techniques. This data
is taken from the article Brain Size, Head Size, and IQ in Monozygotic Twins
by Tramo, M.J. et al and published by Neurology 1998; 50:1246-1252. Re-
produced with permission.

Variables Pair Pair identifier

Twin1 Total brain volume of first-born twin (cubic centimetres)

Twin2 Total brain volume of second-born twin (cubic centime-
tres)

Source lib.stat.cmu.edu/datasets/IQ_Brain_Size

brains

Description Statistical data for seven countries, collected from the CIA World Factbook
on the 5th August 2012

Variables country Country name

lifeExp Life expectancy (years)

urban Living in urban areas (%)

pcGDP Per capita gross domestic product ($US)

Source www.cia.gov/library/publications/the-world-factbook/

CIAdata1, CIAdata2

Description Total sales at a coffee shop over a five day period. This is fictional data.

Variables date Date in format dd/mmm/yyyy

sales Sales for the day (£)

coffeeshop
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Description The results of an experiment to determine the best concrete mix. The ex-
periment was conducted in Santiago, Chile in 2007.

Variables Cement Cement type (I or II)

Additive Additive (A or B)

Additive.Dose Additive dose (0.3%, 0.4% or 0.5%)

Density Density (grams per cubic centimetre)

concrete

Description Consumer price index data for six countries (2012).

Variables country Country name

CPI Consumer price index (relative to New York at
100)

Source www.numbeo.com/cost-of-living/rankings_by_country.jsp

CPIdata

Description The names and addresses of five customers living in the area of Reading,
Berkshire, UK. This is fictional data.

Variables Name Character string giving customer’s full name

Address Character string giving customer’s full address

customers
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Description Conservation status of four big cat species

Variables Name Name of species

Status Conservation status

Source http://www.bigcats.com/redlist.php

endangered

Description UK Sales (including VAT) for the years 2007 to 2011 for the Tesco, Sainsburys
and Morrisons supermarket chains.

Variables Year Year (2007-2011)

Tesco UK sales including VAT (£M) for Tesco

Sainsburys UK sales including VAT (£M) for Sainsburys

Morrisons UK sales including VAT (£M) for Morrisons

Source www.tescoplc.com/files/pdf/reports/tesco_annual_report_2011.pdf (p106)
www.tescoplc.com/files/pdf/reports/annual_report_2010.pdf (p16)
www.tescoplc.com/files/pdf/reports/annual_report_2009.pdf (p34)
www.tescoplc.com/files/pdf/reports/annual_report_2008.pdf (p5)
www.tescoplc.com/files/pdf/reports/annual_report_2007.pdf (p3)
www.j-sainsbury.co.uk/about-us/financial-performance/5-year-summary/
www.morrisons.co.uk/corporate/2011/annualreport/investor-information/five-year-
summary-results/

fiveyearreport
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Description Flight data for seven flights departing from Southampton Airport on the 12th
and 13th of January 2012.

Variables Date Date of flight in format dd/mm/yyyy

Time Time of flight in format hh:mm

Flight.number Alphanumeric flight number

Destination Name of destination city

Source www.southamptonairport.com

flights

Description Dataset of UK fruit prices at August 2012.

Variables Product Product name

Price Sale price (£)

Unit Sale unit

Source www.sainsburys.co.uk

fruit

Description Fictional dataset giving the grades of fifteen students belonging to three
classes labelled A, B and C.

Variables ClassA Grades of students in class A (%).

ClassB Grades of students in class B (%).

ClassC Grades of students in class C (%).

grades1
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Description Physical characteristics for a sample of sixteen people. Sample selected using
non-random methods. Data is self-reported.

Variables Subject Respondent number

Eye.colour Eye colour (Blue, Green or Brown)

Height Height (centimetres)

Hand.span Hand span of left hand (millimetres)

Handedness Handedness (L=left-handed, R=right-handed)

Sex Sex (1=Male, 2=Female)

people

Description This dataset is a clean version of the people dataset.

Variables Subject Respondent number

Eye.colour Eye colour (Blue, Green, Brown)

Height Height (centimetres)

Hand.span Hand span of left hand (millimetres)

Handedness Handedness (Left or Right)

Sex Sex (Male or Female)

Height.cat Height category (Tall, Medium or Short)

people2

Description Thirty measurements of pressure, temperature and output collected from a
gas electrical turbine at a UK power station in 2010.

Variables Pressure Pressure inside turbine (millibars)

Temperature Temperature inside turbine (degrees centi-
grade)

Output Output of turbine (megawatts)

powerplant
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Description Pulse data for four people. Sample selected using non-random methods.
Data is self-reported.

Variables patient Patient identifier

pulse1 First pulse reading (beats per minute)

pulse2 Second pulse reading (beats per minute)

pulse3 Third pulse reading (beats per minute)

pulserates

Description Gives the results of a simple experiment to compare the cubic resistance of
four concrete formulations, at three, seven and fourteen days after setting.
Experiment conducted in Santiago, Chile in 2007.

Variables Formula A (Huechuraba Aggregate + Additive A)
B (Huechuraba Aggregate + Additive B)
C (Mauro Aggregate + Additive A)
D (Mauro Aggregate + Additive B)

Day3 Cubic resistance (kilograms per square metre), measured
three days after setting

Day7 Cubic resistance (kilograms per square metre), measured
seven days after setting

Day14 Cubic resistance (kilograms per square metre), measured
fourteen days after setting

resistance
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Description Data for four UK supermarket chains. Data for number of stores and total
sales area is collected from the respective 2011 annual reports and Market
Share is collected from Kantar Worldpanel.

Variables Chain Name of chain

Stores Number of stores in the UK

Sales.Area Sales area (1,000 square feet)

Market.Share Market share (%)

Source www.tescoplc.com/media/417/tesco_annual_report_2011_final.pdf
www.j-sainsbury.co.uk/investor-centre/reports/2011/annual-report-and-financial-
statements-2011/
www.morrisons.co.uk/Documents/Morrisons-Annual-Report-2011.pdf
www.kamcity.com/namnews/mktshare/2011/kantar-march11.htm

supermarkets

Description Measurements of systolic blood pressure, diastolic blood pressure and pulse
rate for four patients. This is fictional data.

Variables subject Patient identifier

test Name of parameter (SysBP, DiaBP, Pulse)

result Systolic blood pressure (mmHg), diastolic blood pressure
(mmHg) or pulse (beats per minute)

vitalsigns



195

Description Data on alcohol consumption and mortality rate for five countries, collected
from the WHO website.

Variables alcohol Alcohol consumption per adult over 15 years
(litres of pure alcohol per person per year)

mortality Adult mortality rate (probability of dying be-
tween 15 and 60 years, per 1000 of population)

Source apps.who.int/ghodata

WHOdata
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Index
abline function, 101, 116, 158
addmargins function, 76
aggregate function, 62
analysis of variance, 136
AND operator, 46, 172
anova function, 136, 156
aov function, 136
appending, 49
apply function, 35
arrows function, 119
as.character function, 35
as.data.frame function, 76
as.Date function, 41
as.factor function, 34, 37
as.numeric function, 34
assignment operator, 6
association, 63
axis labels, 109
axis limits, 111

bar charts, 98
barplot function, 98
bartlett.test function, 143
bitmap image, 106
Bonferroni adjustment, 140
boxplot function, 104, 111
bracket notation, 10, 43, 46

c function, 8, 19
cbind function, 50
character variables, 38
chisq.test function, 77
class function, 33
coef function, 136, 158, 159
coefficient estimates, 158
coefficient of determination, 156
coefficients function, 158
colours, 112
colours function, 112
command prompt, 3

comments, 16
comparison operators, 172
concatenating, 49
conditional statements, 171
conditions, 172
confidence intervals, 70
confint function, 136, 158
contingency table, 74
contrasts function, 152
cooks.distance function, 164
copying variables, 35
cor function, 64, 65
cor.test function, 66
correlation, 63, 64
cov function, 64
covariance, 63, 64
csv files, 21, 28
cumulative distribution function, 84, 86
curve function, 95, 105, 117, 159
cut function, 36

data editor, 13, 43
data frames, 9
data.frame function, 20, 166
date function, 5
dbinom function, 85
DIF files, 21, 23
difftime function, 42
dnorm function, 86
dpois function, 85
duplicated function, 44

error messages, 15
Excel files, 24
exp function, 8
exporting datasets, 28

F-test for equality of variance, 142
F-test for model fit, 156
factor variables, 37
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fisher.test function, 81
fitted function, 160
fix function, 13, 43
for loop, 178
foreign package, 27
format function, 39, 43
formula function, 154
ftable function, 75
function function, 169
functions, 5

getwd function, 28
glm function, 147
graphics device, 93
grep function, 40
grid function, 118

hatvalues function, 163
help function, 6
hist function, 95, 161
histograms, 95

if statement, 173
if/else statement, 175
intercept, 148, 152
inverse cumulative distribution function, 84
inverse cumulative dstribution function, 88
IQR function, 60

jpeg image, 106

Kolmogorov-Smirnov test, 68
Kruskal-Wallis test, 138
kruskal.test function, 138
ks.test function, 68

legend function, 122
length function, 8, 60
levels function, 37, 152
leverage, 163
line of best fit, 101, 158
line thickness, 115
line type, 114
lines function, 119
lm function, 147, 148
log function, 151
loops, 178

Mann-Whitney U test, 134
max function, 60
mean function, 60
median function, 60
merge function, 51
min function, 60
multiple linear regression, 149

names function, 33
normal probability plots, 96
numeric variables, 35

objects, 6
objects function, 14
OR operator, 46, 173
order function, 47

paired t-test, 132
pairs function, 102
pairwise.t.test function, 140
pairwise.wilcox.test function, 141
par function, 113, 124
paste function, 38
pbinom function, 87
pdf file, 106
pexp function, 87
pie function, 100, 110
pie charts, 100
plot function, 93, 98, 101, 161
png image, 106
pnorm function, 86
points function, 119
polynomial regression, 151
precedence, 4
index function, 164
predict function, 70
prediction intervals, 70
probability density function, 84
probability mass function, 84
prop.table function, 75

qexp function, 89
qnorm function, 88
qpois function, 89
qqline function, 96
qqnorm function, 96
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quantile function, 60
quartz device, 93

rainbow function, 113
random numbers, 84, 89
random sample, 47
range function, 60
rbind function, 49
rbinom function, 90
read.csv function, 21
read.csv2 function, 23
read.delim function, 21
read.delim2 function, 23
read.DIF function, 23
read.table function, 24
rearranging variables, 32
relational operators, 45, 172
relative file paths, 28
relevel function, 38, 152
removing variables, 32
renaming variables, 33
reshape function, 56
resid function, 160
residuals function, 160
rexp function, 91
rm function, 14, 20
rnorm function, 90
rotating, 56
round function, 5, 43, 75
rpois, 91
rstandard function, 160
rstudent function, 160

sample function, 47, 90
sapply function, 34, 60
savePlot function, 106
scatter plots, 101
scatterplot matrices, 102
script file, 15
sd function, 60
segments function, 116
setwd function, 28
shading density, 115
shapiro.test function, 67
simple linear regression, 148
sorting, 47

Spearman’s correlation, 63, 65
SPSS files, 26
stack function, 54
Stata files, 27
stem function, 97
stem-and-leaf plots, 97
step function, 155
stepwise model selection, 155
strptime function, 42
subset function, 32, 44
substring function, 39
subtitle, 109
summary function, 59, 79, 156
switch function, 176
symbols, 114
Sys.Date function, 43

t.test function, 70, 129
tab-delimited files, 21, 29
table function, 73
table object, 73
tapply function, 61
text function, 117
title, 109
transformations, 151
TukeyHSD function, 139

unique function, 44
unstack function, 55
update function, 153

var function, 60
var.test function, 142
variable classes, 33
vectors, 8

warning messages, 15
weekdays function, 43
while loop, 179
wilcox.test function, 134
Wilcoxon rank-sum test, 134, 141
workspace, 14
write.csv function, 28
write.table function, 29

xtabs function, 76


