Physical History



First published on May 16, 2019. Last updated on January 20, 2021.


This section introduces the subject of Physical History and Economics (PHE). Physical History and Economics is a small treatise on the development of a unified science of history. It is chiefly a physical model, in that it deals with physical principles, quantities, tendencies and constraints. At attempts to do so quantitatively where possible. It also delves into other areas such as psychology, and traditional history. However, the author has great respect for researchers and their work in those areas, and does not assert expertise in those areas.

Work In Progress

This entire publication is a work-in-progress. Substantive research is being conducted behind the scenes and presented in academic settings. Trying to weave everything together is a challenge, and one never knows how much time may be left to improve the content. The author engages in this work in the hope that it may be of great benefit to both the positive advancement and sustainability of humanity, and the seeking of knowledge.

So changes will be made in a hard-to-predict manner to the various sections. Therefore, if you do cite this work, please include the date last viewed.



Imagine the hot sun shining brightly upon the Earth situated in cold space. Much light is reflected back from the Earth into space. The remainder of the light is absorbed by the Earth and heats its surface. Nature abhors temperature differences, and tries to rectify the situation as quickly as possible by having the Earth emit heat back into space. Yet the Earth’s atmosphere a good insulator. To bypass that insulation, great blobs of hot air at the surface rise wholesale into the upper atmospheric cooler regions, so the escape of heat is greatly increased, and Nature is pleased.

Yet the light that gets reflected from the Earth is not heat nor does much to warm the coldness of space. Nature does not gladly tolerate such rogue light. So living organisms develop upon the Earth that can capture and photosynthesize some of the rogue light. Those organisms release heat or are consumed by other organisms that produce heat. Nature is still not satisfied and demands greater haste. Intelligent organisms form that can release heat faster, and civilizations form that can release heat yet faster, further pleasing Nature.

Nature is greedy and demands all that it can seize. Just as great blobs of air form and rise through the atmosphere, dynasties and empires form in succession one after another, releasing heat that is otherwise inaccessible. History is literally a pot of water boiling on a hot stove in a cold kitchen, with dynasties and empires forming and bubbling up to the surface. Is there more that Nature can yet demand? New technologies and untapped sources of energy? New forms of civilization? Or the yet totally unknown?

This book is intended to serve as an introduction and handbook. Rich descriptions as well as much technical detail have been omitted to improve readability and avoid confusion. Additional sources of information are cited for the reader who wishes to know more. In this book, you will envision how humans are linked to the entire universe and how we share its drive and destiny. Unfortunately, PHE does not provide quick, easy answers to society’s challenges. Nevertheless, you will discover analytical tools as powerful as the astronomer’s telescope and the biologist’s microscope to investigate human affairs. This is a tall order to fill. It is best to remember that this book is more of a framework of perspectives and tools to help you get started, rather than an encyclopedia of answers. This is still a pioneering field. There are considerable opportunities for further contributions of the greatest significance.

PHE derives social science primarily from physics, but also from other areas such as cosmology, ecology and psychology. PHE is more fundamental than social science derived merely from the observation of humans, because it views the existence of humans as the result of cosmological trends and physical processes. Likewise, PHE strives to be generic, so that it can be used to describe and analyze any society anywhere and anytime, be it the Carolingian dynasty in medieval France or an extraterrestrial society across the galaxy. Observation strongly suggests that the laws of physics remain invariant across time and space, allowing for the possibility of a truly generic, non-geocentric social science derived from physical principles.

Although PHE is based upon the physical sciences, no claim is made for its ability to “produce” a perfectly deterministic science. In fact the approaches of PHE are only practical because people act as individuals and have a wide freedom of action. This seems paradoxical, but that is the way things work out.

Inner Versus Outer Philosophy

In ancient times, natural (outer) and social (inner) philosophy were closely linked. Then, a philosopher’s view of the composition of matter might be closely linked to their view of the best type of government for society. This unity of inner and outer philosophy continued in Europe until the Renaissance.[1] However, the heliocentric universe proposed by Copernicus and the findings of imperfect heavens by Galileo were deemed inconsistent with the inner, social philosophy of that time. The resulting severance of inner and outer philosophy began in earnest and has continued to this day.

PHE approaches social science from the perspective of outer philosophy. Both approaches are necessary for the development of a complete and meaningful social science. We are humans who attempt to develop social science. We try to be impartial, but must admit that our ability to do so is inherently limited. Motivation and incentives are always a factor in what gets studied. Why should we develop social science if it does not benefit those of us who endeavor to do so? Even physical scientists are human and have the same sort of needs that other people have. The subject of psychology and how it colors people’s reaction to PHE is discussed in a later section.

A Unified Model

The social sciences already utilize some quantitative methods. Economists utilize them perhaps exhaustively and several historians practice cliometrics. Nevertheless, the social sciences have lacked the type of unified model that Newton provided for the physical sciences. Ever since Newton created his three laws to describe the mechanical universe, numerous philosophers and social scientists have tried to create a mechanical model of society without success. Meanwhile, in the early 1900s, Newton’s laws of mechanics were shown to be idealizations of a much less deterministic, statistical universe. Ironically, it is the fall of Newtonian mechanics that allows for the achievement of a true “science of society.” PHE is not the purely deterministic dream of early “Newtonian” sociologists. Rather PHE uses concepts from modern statistical mechanics to provide a firm foundation for a fundamental understanding of history and economics.

This book provides the skeleton of such a unified model. The Principle of Fast Entropy, an extension of the Second Law of Thermodynamics[1], is suggested as a unifying, driving principle. Just as gravity is the key force in Newton’s unified model of the physical universe, Fast Entropy is the key tendency for a unified model of the social universe. Fast Entropy is literally the “gravity” of social science. Fast Entropy applies to both the social and physical sciences. Fast Entropy can be used to analyze, understand and validate other economic and historical methodologies. It is a constraint that can be used to identify other constraints. In science, a known constraint is a valuable piece of knowledge.

The author hopes you will find this text useful. The philosophical implications are glossed over in favor of presenting pragmatic approaches and tools. It is hoped that this work will stimulate you to develop your own ideas and approaches, for one of the fundamental characteristics of science is that it is always unfinished.

Notes & References

[1] H. Scott had previously proposed deriving economic policy from thermodynamics, in particular the works of W. Gibbs, in the 1920s.  Source:


Content is copyright the author. Layout is copyright Mark Ciotola. See for further notices.